# बी.टी.सी. (द्विवर्षीय) पाठ्यक्रमानुसार

(बेसिक टीचर सर्टीफिकेट) सेवापूर्व शिक्षक प्रशिक्षुओं के लिए पाठ्यपुस्तक

# विज्ञान तृतीय सेमेस्टर



राज्य शैक्षिक अनुसंधान और प्रशिक्षण परिषद्, उ.प्र., लखनऊ राज्य विज्ञान शिक्षा संस्थान, उ.प्र., इलाहाबाद संरक्षक - श्री हीरा लाल गुप्ता-आई.ए.एस, सचिव बेसिक शिक्षा, उ.प्र. शासन लखनऊ

परामर्श – श्रीमती शीतला वर्मा-आई.ए.एस., राज्य परियोजना निदेशक, उ.प्र. सभी के लिए शिक्षा परियोजना परिषद्, लखनऊ

निर्देशक - डॉ॰ सर्वेन्द्र विक्रम बहादुर सिंह, निदेशक, राज्य शैक्षिक अनुसंधान और प्रशिक्षण परिषद्, उ.प्र. लखनऊ

समन्वयक - श्रीमती नीना श्रीवास्तव, निदेशक राज्य विज्ञान शिक्षा संस्थान, उ.प्र. इलाहाबाद

लेखक - श्री रामानन्द चौधरी, श्रीमती रीता सक्सेना, श्रीमती गीता बनर्जी, श्री श्रुति देव सिंह, श्रीमती विभा दुबे, श्रीमती ममता दुबे।

कम्प्यूटर ले आउट-कॉमर्शियल प्रेस, इलाहाबाद

# प्राक्कथन

समय-समय पर सामाजिक बदलाव और उसके अनुरूप आवश्यकताओं को ध्यान में रखते हुए शिक्षा-प्रणाली तथा पाठ्यक्रमों में भी संशोधन एवं युगानुरूप परिवर्तन करने की आवश्यकता शिक्षा-विदों द्वारा अनुभव किया जाना एक स्वाभाविक प्रक्रिया है। इसी के अन्तर्गत राष्ट्रीय पाठ्यचर्या की रूपरेखा 2005 तथा शिक्षक-शिक्षा की राष्ट्रीय पाठ्यचर्या की रूपरेखा 2009 के आलोक में उत्तर प्रदेश में प्राथमिक कक्षाओं के शिक्षकों हेतु सेवापूर्व प्रशिक्षण की केन्द्र पुरोनिधानित शिक्षक-शिक्षा योजना लागू की गयी है। इसके अन्तर्गत बी.टी.सी. के दो वर्षीय पाइयचर्या का पुनरीक्षण कर समावेशी विभिन्न विषयों के पाठ्यक्रमों को समुन्नत किया गया है तथा प्रशिक्ष शिक्षकों से यह अपेक्षा की गयी है कि वे बिना किसी भय के शिक्षार्थियों के ज्ञानार्जन में उनकी सहायता कर सकें। नवीन पाठ्यचर्या एवं पाठ्यक्रमों के सिन्निहित उद्देश्यों को दृष्टिगत कर राज्य विज्ञान शिक्षा संस्थान, उ.प्र., इलाहाबाद द्वारा विज्ञान एवं गणित विषयों की पाइय-पुस्तकों का सृजन किया गया है।

पाठ्यपुस्तकों की संरचना करते समय इस बात को विशेष महत्त्व देते हुए भरपूर प्रयास किया गया है कि प्रशिक्षित शिक्षक की ओजभरी वाणी में इतना आकर्षण एवं शक्ति हो कि वह शिक्षाग्रहण करने वाले प्रशिक्षणार्थियों के मन की समस्त दुविधाओं को दूर कर उनकी बुद्धि का पूरा लाभ उन्हें प्रदान कर सके तथा वह गुरुजनों को अपने माता-पिता के समान अपना सच्चा मार्गदर्शक समझकर उनके द्वारा प्रदत्त ज्ञान को प्राप्त कर सके।

विज्ञान और गणित विषय ही समाज को मानव जीवन को जीवन्त बनाने, उसे सब प्रकार के भौतिक सुखों से आप्लावित करने, भविष्य की सुखदयोजनाओं की संकल्पना करने, उसका ब्लू-प्रिन्ट तैयार कर उसे कार्यान्वित करने का सार्थक स्वप्न दिखाते हैं। इन स्वप्नों को साकार करने के बीज जब प्राथमिक और उच्च प्राथमिक स्तर पर बच्चों के उर्वर मन में बो दिया जाता है तथा शिक्षक की वाणी की ज्ञान गंगा जब उन्हें निरन्तर सींचती रहती है, तो उसी में से एक दिन रमन, जगदीश चन्द्रबोस जैसे महान वैज्ञानिक तथा रामानुजन, शकुन्तला जैसे महान गणितज्ञ पैदा होते हैं। यह मानकर चिलए कि हमारे विद्या मन्दिर के प्रत्येक बालक-बालिका के उर में एक वैज्ञानिक, एक गणितज्ञ सोया हुआ है, बस आवश्यकता है कि उसे कैसे जगायें, कैसे ऊर्जा स्थित करें और कैसे सृजनात्मकता के पाढ पढ़ाये और कैसे उसे ज्ञान, बोध, अनुप्रयोग और कौशल के सारे गुर सिखायें कि वह आगे चलकर अपनी अद्भुत प्रतिभा से राष्ट्र को समुन्नत करने का बीड़ा उठा सके।

सीमित समयान्तर्गत गणित विषय की पाइयपुस्तक को आकर्षक कलेवर प्रदान करने में हमें श्री सर्वेन्द्र विक्रम बहादुर सिंह निदेशक, राज्य शैक्षिक अनुसन्धान और प्रशिक्षण परिषद्, उत्तर प्रदेश, लखनऊ का समय-समय पर जो अत्यन्त उपयोगी मार्ग दर्शन प्राप्त हुआ है, उसके लिए मैं उनके प्रति हार्दिक कृतज्ञता ज्ञापित करती हूँ। पाठ्य-पुस्तक के प्रणयन में लेखक मण्डल के सभी सदस्यों के अमूल्य सहयोग के लिए भी मैं उनके प्रति अपना आभार व्यक्त करती हूँ। शिक्षाविद् परामर्शदाताओं के सतत सहयोग से इस पाठ्यपुस्तक को निखारने में हमें जो सहयोग मिला है, उसके लिए भी मैं उन्हें धन्यवाद देती हूँ। मैं अपने संस्थान के सभी विद्वान सहयोगियों को भी हृदय से धन्यवाद देती हूँ जिनके अहर्निश परिश्रम के बल पर ही यह पाइयपुस्तक अन्तिम स्वरूप को ग्रहण कर सकी है।

सुधार और संशोधन की कोई सीमा नहीं होती है। मैं शिक्षा जगत के सभी सुधीजनों से अपेक्षा करती हूँ कि वे अपने सकारात्मक सुझावों से हमें अवश्य अवगत करायेंगे जिससे पाठ्य पुस्तक के अगले संस्करण को और अधिक ऊर्जावान एवं सार्थक बनाया जा सके।

श्रीमती नीना श्रीवास्तव

निदेशक

राज्य विज्ञान शिक्षा संस्थान, उ.प्र., इलाहाबाद

# विषय-सूची

| इकाई | प्रथम   | दैनिक जीवन में विज्ञान और प्रौद्योगिकी1                                                      |
|------|---------|----------------------------------------------------------------------------------------------|
| इकाई | द्वितीय | दाब एवं वैज्ञानिक यंत्र10                                                                    |
| इकाई | तृतीय   | जीव जन्तुओं के बाह्य एवं आन्तरिक अंगों के कार्यों में विविधता23                              |
| इकाई | चतुर्थ  | सूक्ष्म जीवों की दुनिया : संरचना तथा उपयोगिता सूक्ष्म जीव-दोस्त या दुश्मन। भोज्य पदार्थों    |
| इकाई | पंचम    | प्राकृतिक सम्पदा का संरक्षण एवं ब्रह्माण्ड जीवों का विलुप्तीकरण                              |
| इकाई | षष्ठ    | कार्बन एवं उसके यौगिक                                                                        |
| इकाई | सप्तम   | असंक्रामक रोग/अनियमित जीवन शैली से उत्पन्न रोग (मधुमेह, उक्त रक्त चाप, दिल की बीमारियाँ) 132 |
| इकाई | अष्टम   | पर्यावरण और प्राकृतिक संसाधन                                                                 |
| इकाई | नवम्    | ऊष्मा, प्रकाश एवं ध्वनि                                                                      |

# इकाई - 1 दैनिक जीवन में विज्ञान और प्रौद्योगिकी

इस इकाई के अध्ययन के पश्चात निम्नलिखित बातें स्पष्ट होंगी-

- दैनिक जीवन में विज्ञान की भूमिका
- वैज्ञानिक विधि
- वैज्ञानिकों का योगदान
- प्रौद्योगिकी की अवधारणा
- विज्ञान एवं प्रौद्योगिकी की देन
- विज्ञान, प्रौद्योगिकी का अंध विकास समाज के लिए घातक

मानव प्रवृत्ति जिज्ञासु होती है। विज्ञान हमें अपने चारों ओर की वस्तुओं तथा घटनाओं के बारे में नये ज्ञान प्राप्त करने में सहायता करता है। विज्ञान ने हमारे वर्तमान ज्ञान और साधनों में सुधार किया है। मनुष्य में हर चीज को सुनने समझने की एक उत्सुकता होती है। विज्ञान की शुरुआत इसी उत्सुकता से होती है। यह उत्सुकता देखने, छूने, सूँघने, स्वाद चखने या सुनने के कारण होती है। उत्सुकता के कारण हमारे मन में तरह-तरह के सवाल उठते हैं। प्रश्न और जिज्ञासाओं के समाधान से ही विज्ञान का जन्म होता है और इन्हीं का निदान वैज्ञानिकों की देन है। आइये अब चर्चा करते हैं कि वैज्ञानिक जिज्ञासाओं का समाधान किस प्रकार से करते हैं।

# वैज्ञानिक विधि:

आप रोज देखते हैं कि अगर कोई चीज हवा में उछालें या फेंके तो यह जमीन पर गिर जाती है। क्या ऐसा हर जगह और हर चीज के साथ होता है? यह जानने के लिए आप कई तरह की चीजों के साथ विभिन्न स्थानों पर प्रयोग कीजिए। ऐसा करने पर आप पायेंगे कि हर तरह की चीजों : फूल, पत्थर, सिक्के, कपड़े, कागज चाहे जहाँ से गिरायें, वापस जमीन पर गिर जाते हैं। इसका कारण वैज्ञानिक सर आइजेक न्यूटन ने बताया कि पृथ्वी हर वस्तु को अपनी तरफ खींचती है।

आसपास की दुनिया में बहुत सारे सवाल हमारे सामने आती हैं। जैसे—चिड़िया हवा को चीरते हुए उड़ती हैं कैसे? मोमबत्ती फूँकने पर बुझ क्यों जाती हैं? प्रेशर कुकर में दाल जल्दी क्यों पकती है? इस प्रकार की जिज्ञासाओं का उठना स्वाभाविक है।

वैज्ञानिक पहले किसी समस्या पर विचार करते हैं, फिर उससे सम्भावित कारण का अनुमान लगाते हैं। तत्पश्चात् प्रयोगशालाओं में प्रयोग, अवलोकन व प्रेक्षण करते हैं, उसके बाद जाँच, विश्लेषण के द्वारा निष्कर्ष निकालते हैं और फिर उससे समाज को लाभान्वित करते हैं।

कुछ समस्याओं का वैज्ञानिक विधि से विश्लेषण करें। वैज्ञानिक विधि के विभिन्न चरण हैं-

- 1. जिज्ञासा,
- 2. प्रश्न करना
- 3. परिकल्पना
- 4. परीक्षण
- 5. निरीक्षण

- 6. अभिलेखन
- 7. विश्लेषण
- 8. वर्गीकरण
- 9. पुनर्विचार
- 10. निष्कर्ष
- 11. नये प्रयोग

वैज्ञानिक विधि केवल वैज्ञानिकों के लिए ही नहीं, बल्कि प्रत्येक मनुष्य को अपने जीवन से सम्बन्धित समस्याओं के निराकरण हेतु आवश्यक है।

जैसे कार खराब होने पर मिस्त्री द्वारा जाँच करना, खेत में फसल बोने के पूर्व किसान द्वारा खेत तैयार करना।

## वैज्ञानिक खोजों में भारतीयों का योगदान

प्राचीन काल से ही भारतीयों ने वैज्ञानिक खोजों के क्षेत्र में नेतृत्व किया है। चरक जड़ी-बूटियों को दवा के रूप में प्रयोग करने वाले महान चिकित्सक थे तथा सुश्रुत प्राचीन काल के महान शल्य चिकित्सक थे। आर्य भट्ट ने **पाई**  $(\pi)$  का मान (लगभग 3.14) तथा श्रीधराचार्य वर्ग समीकरण का हल देने वाले प्रथम गणितज्ञ थे।



चित्र : भारतीय वैज्ञानिक

आधुनिक वैज्ञानिक खोजों में भी भारतीय वैज्ञानिकों का अभूतपूर्व योगदान है। जैसे जगदीश चन्द्र बोस ने पौथों की संवेदनशीलता का सबसे पहले पता लगाया। सर सीठवीठ रमन, एसठ रामानुजन, एसठ एनठ बोस, मेघनाथ साहा, टीठआरठ शेषाद्रि, होमी जहाँगीर भाभा, विक्रम साराभाई आदि भारतीय वैज्ञानिकों ने विभिन्न क्षेत्रों में वैज्ञानिक खोजों द्वारा विज्ञान के विकास में महत्वपूर्ण योगदान किया। प्रक्षेपणास्त्र निर्माण में

डा० ए० पी० जे० अब्दुल कलाम, डा० कस्तूरी रंगन आदि भारतीय वैज्ञानिकों की विशेष उपलब्धि हैं। वैज्ञानिक खोजों में विदेशी वैज्ञानिकों का योगदान

विदेशी वैज्ञानिकों ने उल्लेखनीय खोजें की हैं। उदाहरण के लिए एडवर्ड जेनर द्वारा रोगों से रक्षा हेतु वैक्सीन का निर्माण, एलेक्जेण्डर फ्लेमिंग द्वारा पेनिसिलीन की खोज, पोलिश वैज्ञानिक क्यूरी तथा मैडम क्यूरी द्वारा रेडियम और पोलोनियम की खोज गैलीलियों ने दूरबीन, थॉमस एडीसन ने ग्रामोफोन एवं विद्युत बल्ब, मारकोनी ने रेडियो, ऑटोहान ने परमाणु बम का आविष्कार किया। सर आइजक न्यूटन ने गुरुत्वाकर्षण, वोल्टा ने प्राथमिक विद्युत सेल, माइकेल फैराडे ने डायनमों, विलियम रौंजेन ने एक्स रे, फर्मी ने परमाणु भट्टी, जॉन लोगी बेयार्ड ने टेलीविजन की खोज की।



अल्बर्ट आइंस्टाइन



सर आइजेक न्यूटन

# प्रौद्योगिकी की अवधारणा

मनुष्य का मस्तिष्क अन्य सभी जीवधारियों की अपेक्षा अधिक विकसित है। मनुष्य अपने विचारशक्ति का उपयोग प्रकृति में होने वाली विभिन्न घटनाओं को जानने में करता रहा है। इस प्रकार एकत्रित ज्ञान का उपयोग मनुष्य ने अपने जीवन की आवश्यकताओं की पूर्ति हेतु तथा जीवन को आरामदायक एवं आनन्दमय बनाने के लिए किया है। आपने देखा होगा लुढ़का कर तने या सिलिन्डर जैसी वस्तुओं को ले जाने में घर्षण बल कम लगता है अतः लुढ़काकर ले जाना सरल है। बैलगाड़ी द्वारा कम ऊर्जा व्यय करके भारी बोझ को एक स्थान से दूसरे स्थान तक आसानी से ले जाया जाता है।

विज्ञान के नियमों एवं सिद्धान्तों के अनुप्रयोग से मानव हित में संसाधनों का निर्माण ही प्रौद्योगिकी कहलाता है।

## विज्ञान एवं प्रौद्योगिकी की देन

इस युग में विभिन्न क्षेत्रों में नये-नये आविष्कार हुए हैं। विज्ञान ने प्रौद्योगिकी तथा प्रौद्योगिकी ने विज्ञान का विकास किया है। वास्तव में प्रौद्योगिकी तथा विज्ञान दोनों एक दूसरे पर आश्रित हैं। प्रौद्योगिकी का विकास विज्ञान के नियम तथा सिद्धान्तों के दैनिक जीवन में उपयोग से होता है। यही कारण है कि प्रौद्योगिकी को व्यावहारिक ज्ञान भी कहते हैं, इसी प्रकार, विज्ञान का जितना अधिक विकास होता है, उतनी ही उत्तम प्रौद्योगिकी विकसित होती है।

सर जेम्स वाट के भाप इन्जन के आविष्कार का फल है कि भाप के इन्जन से रेलों तथा बड़े जहाजों का निर्माण हुआ। जब पेट्रोल उपलब्ध हो गया तो ऐसे हल्के इन्जन बनाना सम्भव हो सका जो बहुत शिक्तशाली थे। इन इन्जनों का उपयोग हवाई जहाज उड़ाने के लिए किया गया। आजकल नित्य नये-नये प्रकार के हवाई जहाजों का विकास हो रहा है। भारत ने भी चालक रिहत लड़ाकू विमान बना लिये हैं। लंदन से न्यूयार्क तक की यात्रा मात्र तीन घंटे में सुपर सोनिक जेट द्वारा तय की जा सकती है। जम्बो जेट एयरक्राफ्ट एक घंटे में लगभग 900 किमी की दूरी तय कर सकता है। हेलीकाप्टर एक घंटे में 250 किमी दूरी तय कर सकता है। समुद्री मार्ग से माल तथा सवारी ढोने के लिए बड़े-बड़े जहाजों का भी प्रयोग होता है।

बीमार होने पर पहले लोग अधिकतर घरेलू उपचार करते थे जिससे पहले लोगों का असमय निधन हो जाया करता था। परन्तु अब लगभग सभी गाँवों में प्राथमिक चिकित्सा केन्द्रों पर डॉक्टरों द्वारा जाँच कर इलाज किया जाता है। आजकल बड़े-बड़े चिकित्सालयों में विभिन्न प्रकार के रोगों से सम्बंधित जाँच की सुविधायें उपलब्ध हैं जैसे खून, पेशाब, मल की जाँच, एक्स-रे अल्ट्रासाउंड कराकर उचित उपचार किया जा रहा है। स्कैनर द्वारा मिस्तिष्क की जाँच की जाती है। शरीर के अन्दर के भागों की जाँच करने की मशीन इन्डोस्कोप का प्रयोग होता है।

पहले टेलीफोन की सुविधा नहीं थी। लोग संदेश वाहक, पत्र या टेलीग्राम से एक दूसरे का हाल-चाल लेते थे। आज से बहुत समय पहले प्रशिक्षित कबूतरों द्वारा संदेश भेजे जाते थे। आज सन्देशों का आदान प्रदान करने के लिए फैक्स (छपकर संदेश), इंटरनेट द्वारा ई-मेल (इलेक्ट्रानिक डाक सेवा) आदि की व्यवस्था है। गाँव-गाँव में पी०सी०ओ० पर एस०टी०डी०, आई०एस०डी० व्यवस्था द्वारा संसार के किसी भी कोने में टेलीफोन द्वारा सम्पर्क करने की सार्वजनिक सुविधाएं उपलब्ध हो गयी हैं।

विद्यालयों एवं कालेजों में पहले शिक्षकों द्वारा पारम्परिक ढंग से अध्यापन किया जाता था। आजकल ओवर हेड प्रोजेक्टर, कम्प्यूटर तथा इंटरनेट आधारित शैक्षिक तकनीक का विकास हुआ है। दूरस्थ क्षेत्र में स्थित ध्वजों को राष्ट्रीय एवं अन्तर्राष्ट्रीय स्तर के योग्य शिक्षकों द्वारा गुणवत्ता परक शिक्षा एजूसेट नामक शैक्षणिक उपग्रह द्वारा संभव हुआ है।

पहले के समय में गाँव के चौपाल में बैठकर लोक संगीत, आल्हा आदि के माध्यम से लोगों का मनोरंजन हुआ करता था। कभी-कभी गाँव में नाच, नौटंकी आदि के द्वारा भी मनोरंजन हो जाया करता था। परन्तु आजकल टेलीविजन, कम्प्यूटर, वीडियो गेम आदि मनोरंजन के साधन हैं। ये सभी आधुनिक विज्ञान तथा प्रौद्योगिकी की देन है।

जब देश परतंत्र था तो देश में उद्योग धन्धे बहुत कम थे, किन्तु आज हमारा देश औद्योगिक क्षेत्र में विकसित देशों की बराबरी कर रहा है। स्टील के उत्पादन हेतु जमशेदपुर, राउरकेला, भिलाई, दुर्गापुर आदि शहर में बड़े-बड़े कारखाने सरकार के नियन्त्रण में खुले हैं।

रिहंद में जलशक्ति से विद्युत बनाने हेतु हाइड्रोइलेक्ट्रिक पावर स्टेशन तथा ओबरा, अनपरा, पनकी, ऊँचाहार आदि स्थानों पर कोयले से विद्युत बनाने हेतु नेशनल थर्मल पावर कार्पोरेशन के पावर स्टेशन स्थापित किये गये हैं। इसी प्रकार नाभिकीय ऊर्जा से विद्युत ऊर्जा के उत्पादन के लिए ट्राम्बे, नरोरा, राणासागर, कल्पक्कम के एटॉमिक पावर स्टेशन कार्य कर रहे हैं।

इसी प्रकार खेती करने के तरीकों में भी परिवर्तन आया है। पहले किसान कृषि के परम्परागत तरीकों से खेती करता था तथा उसके पास सिंचाई के लिए ढेकुली, रहट आदि साधन थे। विडम्बना यह थी कि पर्याप्त उपजाऊ भूमि उपलब्ध होने पर भी खाद्यात्र का उत्पादन बहुत कम था और विदेशों से मंगाना पड़ता था। आज कृषि के क्षेत्र में अनेक यंत्र और तकनीकी का विकास हो गया है और देश अन्न उत्पादन के क्षेत्र में आत्म निर्भर हो गया है। आपने गाँव में ट्रैक्टर चलते तो देखा ही होगा। इसका प्रयोग हल के स्थान पर किया जाता है। आज फसल काटने की मशीन, ट्यूबवेल आदि की भी पर्याप्त व्यवस्था है। उन्नत प्रकार के शोधित बीज, यूरिया, सुपर फॉस्फेट जैसे रासायनिक उर्वरकों के द्वारा कृषि उपज बढ़ाने में पर्याप्त सफलता प्राप्त हुई है। अब हम विदेशों को अन्न का निर्यात भी कर रहे हैं। यह सब कुछ हिरत क्रान्ति के द्वारा सम्भव हुआ है।

# इसे भी जानें :-

आधुनिक कृषि उपकरणों. उन्नतणील बीजों, उर्वरकों और पर्याप्त सिंचाई के साधनों द्वारा कृषि उपज में आशातीत वृद्धि को हरित क्रान्ति कहते हैं।

आजकल सब्जी उत्पादन, मत्स्य, कुक्कुट, रेशम, सुअर के पालन की आधुनिक तकनीकों का विकास हो गया है। आधुनिक प्रौद्योगिकी द्वारा उन्नत प्रकार के मत्स्य बीज एवं संश्लेषित इंजेक्शन के द्वारा 2350 किलोग्राम प्रतिवर्ष प्रति हेक्टेयर मत्स्य उत्पादन किया जा रहा है।

संतुलित आहार, सामयिक टीकाकरण, अच्छी प्रजाति की मुर्गी जैसे-ब्रायलर से प्रति वर्ष 100-150 अंडे, ह्वाइट हार्न से 256-285 अंडे प्रति वर्ष प्राप्त किए जा रहे हैं। रेशम उत्पादन में भी हमारा देश आत्म निर्भर है। इसका कारण रेशम के कीटों को शहतूत के वृक्षों पर वैज्ञानिक विधि से पाला जाना है। सुअरों के रख- रखाव की नवीन विधियाँ विकसित हो चुकी हैं जिससे संतुलित आहार और सामयिक टीकाकरण से उन्नत प्रजातियों के स्वस्थ सुअरों का पालन सम्भव हो रहा है।

वैज्ञानिक तकनीकी विकास के साथ पर्याप्त मात्रा में मछिलियाँ, अंडे, आदि का उत्पादन किया जा रहा है जिससे हमारी बढ़ती हुई जनसंख्या को पौष्टिक आहार उपलब्ध हो रहा है तथा विदेशों में इनका निर्यात करके विदेशी मुद्रा भी अर्जित करने में सफलता प्राप्त हो रही है। इसी प्रकार सोलर कुकर जैसे ऊर्जा दक्ष उपकरणों का उपयोग व्यापक रूप में हो रहा है जिसमें गृहणी दाल, चावल आदि रख कर सूर्य के प्रकाश में पकने के लिए रख देती हैं तथा अपना जरूरी कार्य भी करती रहती हैं। सोलर कुकर में लगभग दो घंटे के बाद दाल-चावल पक कर तैयार हो जाता है।

### विज्ञान और प्रौद्योगिकी के विकास से विभिन्न क्षेत्रों में क्रान्तिकारी परिवर्तन :

#### औद्योगिक क्रान्ति :

आज हमारे देश में छोटी-छोटी मशीनों से ले कर बड़ी-बड़ी मशीनों का निर्माण हो रहा है। रेल इंजन हो या हवाई जहाज, छोटे-छोटे वाहन हों या बड़े-बड़े जलपोत, उत्पादक मशीनें हो या मशीनों को तैयार करने वाली बड़ी-भारी मशीनें सब हमारे देश में बनने लगी हैं।

लड़ाकू विमान, युद्धपोत, पनडुब्बी, विविध प्रक्षेपास, विमान भेदी तोपें, टैंक आदि के निर्माण में हम आत्म निर्भर हैं। रेडियो, टेप-रिकार्डर, टेलीविजन आदि मनोरंजन के साधनों के निर्माण में स्वदेशी प्रौद्योगिकी का प्रयोग हो रहा है। सूचना प्रौद्योगिकी के क्षेत्र में भारत अग्रणी राष्ट्र की भूमिका निभा रहा है। औद्योगिक क्षेत्र में भारत का स्थान विश्व के छः प्रमुख राष्ट्रों में है।

## • जनसंचार क्षेत्र में क्रान्ति :

कम्प्यूटर, इलेक्ट्रॉनिक डाक सेवा (ई-मेल) और इंटरनेट का विकास बहुत तेजी से हुआ है। इससे जन संचार क्षेत्र में क्रान्ति आ गई है। कम्प्यूटर, ई-मेल और इन्टरनेट का क्या अर्थ है? आइये जाने।

#### • कम्प्यूटर :

कम्प्यूटर एक इलेक्ट्रॉनिक मशीन है जिससे अनेक उपयोगी एवं जटिल कार्य सरलता से सम्पन्न किये जा सकते हैं। व्यापक स्तर पर कम्प्यूटरों का उपयोग रेल-आरक्षण, आँकड़ों का रख-रखाव, गणना, टाइप आदि अनेक प्रकार के कार्य करने में किया जा रहा है।

#### • इन्टरनेट :

यह कम्प्यूटर की नवीनतम प्रणाली है। विश्व के हजारों छोटे-छोटे कम्प्यूटर नेटवर्क टेलीफोन लाइन से जोड़ दिए जाते हैं। टेलीफोन लाइन की सहायता से जुड़े कम्प्यूटर नेटवर्क को **इन्टरनेट** कहते हैं। इसकी सहायता से हम कमरे में बैठे विश्व के विभिन्न देशों तथा किसी भी विषय से सम्बन्धित सूचनाएं एवं आंकड़े पलभर में

प्राप्त कर सकते हैं और उनका संग्रह भी कर सकते हैं। कई नवीन पुस्तकें भी पढ़ सकते हैं। इलेक्ट्रॉनिक डाक सेवा (ई-मेल)

यह कम्प्यूटर एवं इन्टरनेट आधारित संचार की महत्वपूर्ण युक्ति है। इसके द्वारा कृत्रिम उपग्रहों के माध्यम से अन्य देश के कम्प्यूटरों को सूचना, संदेश आदि का आदान-प्रदान किया जा सकता है। यह एक देश से दूसरे देश को संदेश भेजने का सबसे सस्ता साधन है। जैसे-भारतवर्ष में सिंगापुर को संदेश अत्यन्त कम शुल्क पर पल भर में भेजा जा सकता है।

#### कृषि :

जनसंख्या विस्फोट से भूमि पर दबाव बढ़ा है जिसके कारण खाद्यात्र की समस्या मानव के लिए एक विशेष प्रकार की चुनौती के रूप में खड़ी हुई है। किन्तु कृषि के क्षेत्र में वैज्ञानिक आविष्कारों जैसे-ट्रैक्टर, अच्छे प्रकार के हल, टयूबवेल, कीटनाशक दवाओं, उन्नत कोटि के बीज, रासायनिक उर्वरकों आदि के प्रयोग से कृषि उपज में पर्याप्त वृद्धि हुयी है। इसके फलस्वरूप हम अपनी बढ़ी हुई जनसंख्या को पर्याप्त मात्रा में खाद्यात्र उपलब्ध कराने के साथ-साथ विदेशों को भी खाद्यात्र निर्यात करने में सफल हुए हैं।

#### • ईंधन :

पेड़ की सूखी पत्तियाँ, गोबर से तैयार उपले, लकड़ी, कोयला और मिट्टी का तेल आदि बहुत पहले से ईंधन के प्रमुख स्रोत हैं। इनके प्रयोग में बहुत अधिक समय और श्रम लगता है।

वर्तमान में पेट्रोल, डीजल, खाना पकाने की गैस (एल०पी०जी०) जैसे ईंधन का बड़े पैमाने पर उत्पादन हो रहा है। एक स्थान से दूसरे स्थान तक इनके आवागमन के उत्तम साधन उपलब्ध हैं। इनके प्रयोग से समय और श्रम दोनों की बचत हो रही है। फलस्वरूप ईंधन के क्षेत्र में क्रान्ति आ गई हैं।

#### • चिकित्सा

चिकित्सा के क्षेत्र में भी बहुत तीव्र गित से विकास हुआ है। हैजा, मियादी बुखार आदि के सफल इलाज हेतु नई औषधियाँ की खोज हुई है और इनका पर्याप्त उत्पादन भी हो रहा है। चेचक, हैजा, काली खासी, पोलियो, टी०बी० की रोकथाम हेतु उपयुक्त प्रतिरोधी टीकों का विकास हुआ है। अल्ट्रासाउन्ड, एक्स-रे, इण्डोस्कोपी आदि का शरीर के अन्दरूनी भागों की जाँच में प्रयोग हो रहा है। इनसे घातक बीमारियों की रोकथाम में तीव्र गित से सफलता मिली है। फलस्वरूप चिकित्सा के क्षेत्र में क्रान्ति आ गई है।

# • राष्ट्रीय सुरक्षा एवं युद्ध :

राष्ट्रीय सुरक्षा के क्षेत्र में हमारे देश ने बहुत तेजी से उन्नित की है। इससे एक नई क्रान्ति आ गई है। पृथ्वी, अग्नि, त्रिशूल जैसी मिसाइलों का निर्माण हमारे देश में हो चुका है। इनका सफल प्रक्षेपण भी हुआ है। मिसाइलों का प्रयोग दूसरे देशों द्वारा आक्रमण होने पर उनके युद्ध अस्त्रों को नष्ट करने में होता है। इनसे हमारे

देश की प्रभावी ढंग से सुरक्षा होती है। युद्ध की स्थित में रॉकेट द्वारा मिसाइलें छोड़ने की तकनीक ने हमारे देश में सफलता प्राप्त की है। वैज्ञानिकों ने अन्तरिक्ष में उपग्रहों को स्थापित करने के लिए रॉकेट प्रौद्योगिकी का विकास किया है। अन्तरिक्ष में भेजने के लिए इनकी विशेष रचना की गई है। भारत ने कृत्रिम उपग्रहों को विकसित करने तथा उन्हें पृथ्वी की कक्षा में स्थापित करने की प्रौद्योगिकी में महत्वपूर्ण सफलतायें प्राप्त की हैं। भारत में अंतरिक्ष अन्वेषण तथा अन्तरिक्ष प्रौद्योगिकी के विकास एवं अनुप्रयोग का कार्य भारतीय अंतरिक्ष अनुसंधान संस्थान (Indian Space Research Organisation) द्वारा किया जाता है। इसे संक्षेप में ISRO भी कहते हैं। यहाँ कृत्रिम उपग्रहों को डिजाइन करके निर्माण किया जाता है। कृत्रिम उपग्रह भी पृथ्वी की परिक्रमा करते हैं। कृत्रिम उपग्रहों से न केवल दूर संचार व्यवस्था में अभूतपूर्व विकास सम्भव हो पाया है वरन सुदूर संसूचन (Remote Sensing) में भी हम विश्व में अग्रणी हो गये हैं।

हमने परमाणु ऊर्जा के क्षेत्र में भी अनेक कीर्तिमान स्थापित किये हैं। परमाणु ऊर्जा तथा उससे सम्बन्धित शोध कार्यों के परिणाम स्वरूप अनेक परमाणु ऊर्जा संयंत्र स्थापित किये जा चुके हैं, जिनसे विद्युत उत्पादन किया जा रहा है। इसके अतिरिक्त परमाणु ऊर्जा का उपयोग चिकित्सा तथा कृषि क्षेत्र में अनेक लाभकारी कार्यों के लिए किया जा रहा है।

# विज्ञान और प्रौद्योगिकी के विकास से मनुष्य को केवल लाभ ही नहीं मिला है वरन् इससे अनेक प्रकार की हानियाँ भी हुई हैं।

बड़े-बड़े उद्योगों की संख्या बहुत बढ़ गई है। इनसे निकलने वाले अपशिष्ट पदार्थ प्रायः बिना उपचार किये निदयों में बहा दिए जाते हैं अथवा भूमि में विसर्जित कर दिये जाते हैं, जिसके कारण निदयों का जल तथा भू-क्षेत्र प्रदूषित हो रहे हैं। कृषि उपज बढ़ाने के लिए उर्वरकों तथा कीटनाशक दवाओं का अत्यधिक प्रयोग करने से मृदा प्रदूषण की समस्या भी उत्पन्न हो रही है तथा भूमि की उर्वरा शक्ति भी कम हो रही है। मनोरंजन के साधन बढ़ जाने से ध्विन प्रदूषण हो रहा है। स्वचालित मशीनों के प्रयोग से कारखानों में मजदूरों की आवश्यकता कम पड़ती है जिसके कारण बेरोजगारों की संख्या में वृद्धि हुई हैं। जंगलों की अंधा-धुंध कटाई हो रही है, फलस्वरूप जंगलों का विनाश हो रहा है और वातावरण में प्रदूषण बढ़ता जा रहा है। इतना ही नहीं इसके कारण अनेक प्रजाति के जन्तुओं जैसे बाघों की संख्या में कमी हो रही है तथा उनका अस्तित्व खतरे में पड़ गया है।

विज्ञान तथा प्रौद्योगिकी से होने वाली हानियों से बचने के लिए हमें प्राकृतिक संसाधनों का समझदारी से दोहन करना होगा तथा नये आविष्कारों का उपयोग समाज की उन्नति के लिए करना होगा। इस बात की जनजागरुकता होनी चाहिए कि विज्ञान के अनुप्रयोग की प्रक्रिया में पर्यावरण पर कोई दुष्प्रभाव न पड़े।

# मुल्यांकन

1. एक्स-रे का आविष्कार किया-

(i) एडीसन ने

(ii) विलियम रौंजेन ने

(iii) मारकोनी ने

- (iv) ऑटोहान ने
- 2. निम्नलिखित यातायात साधनों में कौन-सा विज्ञान एवं प्रौद्योगिकी की देन है?
  - (i) बैलगाड़ी

(ii) घोडागाडी

(iii) साइकिल

(iv) ऊँट

- 3. एजूसेट क्या है?
  - (i) शैक्षिक समिति

(ii) शैक्षिक कार्यक्रम

(iii) शैक्षिक उपग्रह

- (iv) इनमें से कोई नहीं।
- कृषि उपज में आशातीत वृद्धि को ...... क्रान्ति कहते हैं।
- 5. मस्तिष्क की जाँच करने की मशीन का क्या नाम है?
- 6. प्रौद्योगिकी का क्या अर्थ है?
- 7. भारतवर्ष में एटॉमिक पावर स्टेशन कहाँ-कहाँ स्थापित है?
- शिक्षा के क्षेत्र में प्रौद्योगिकी का देन लिखिए।
- प्रौद्योगिकी के विकास से जनसंचार क्षेत्र में उत्पन्न क्रान्ति का वर्णन कीजिए।
- 10. प्रौद्योगिकी की सफलता किन-किन बातों पर निर्भर करती है? स्पष्ट कीजिए। इसे करें-

दैनिक जीवन के विभिन्न क्षेत्रों में पहले से प्रयोग में आने वाले साधन तथा अब विज्ञान, प्रौद्योगिकी की देन को एक तालिका में अंकित करें।

# इकाई - 2

# दाब एवं वैज्ञानिक यन्त्र

इस इकाई को अध्ययन करने के पश्चात निम्नलिखित बातें स्पष्ट होंगी-

- दाब की अवधारणा
- दाब तथा बल के सम्बन्ध
- वायु द्वारा आरोपित दाब तथा उसका प्रभाव।
- निर्द्रव दाबमापी, साइकिल पम्प, फुटबाल पम्प तथा जल पम्प के सम्बन्ध में जानकारी।
- उत्प्लावन बल।
- आर्कमिडिज का सिद्धान्त।
- द्रव द्वारा आरोपित दाब तथा उसका महत्व।

  दाब की अवधारणा—प्रशिक्षु जानते हैं कि किसी वस्तु को खींचने या धक्का देने में बल लगाया जाता
  है।

दाब की अवधारणा को स्पष्ट समझने के लिए आइये, वस्तुओं पर बल के प्रभाव पर विचार करें—
कियाकलाप-

# एक छिछला बर्तन लें।

- इसमें लगभग 6 सेमी0 बालू बिछायें।
- एक ईंट लें।
- पहले इसे बालू में खड़ा रखें, इसके बाद इसे लेटा कर रखें (चित्र)
- क्या दिखाई देता है?

ईंट को लेटा कर रखने की अपेक्षा ईंट को खड़ा रखने पर यह बालू में अधिक गहराई तक धँस जाती है। क्यों?





ईंट की प्रथम अवस्था में बालू से ईंट को सम्पर्क तल का क्षेत्रफल कम होने के कारण बल का प्रभाव अधिक होता है और दूसरी अवस्था में सम्पर्क तल अधिक होने के कारण बल का प्रभाव कम हो जाता है। क्या निष्कर्ष निकलता है?

- सम्पर्क तल का क्षेत्रफल अधिक होने पर बल का प्रभाव कम हो जाता है।
- सम्पर्क तल का क्षेत्रफल कम होने पर बल का प्रभाव अधिक हो जाता है।
   सम्पर्क तल के समान क्षेत्रफल पर विभिन्न परिमाण के बल लगाने का क्या प्रभाव होता है?

#### क्रिया कलाप

- बालू से भरा एक छिछला बर्तन लें।
- इसमें एक ईंट खड़ी रखें।



- इसके ऊपर चित्रानुसार एक ईंट क्षैतिज रखें।
- इसके पश्चात् इसके ऊपर एक ईंट और रखें
   क्या होता है?

खड़ी ईंट पर एक ईंट के स्थान पर दो ईंटे रखने पर यह बालू में अधिक गहराई तक धँस जाती है। किस स्थिति में खड़ी ईंट पर अधिक बल लग रहा है? दो ईंटें रखने पर अधिक बल लग रहा है। क्या निष्कर्ष निकलता है?

- समान तल पर लगने वाले बल को बढ़ा देने से उसका प्रभाव अधिक होता है।
- संपर्क तल का क्षेत्रफल समान होने पर आरोपित बल का परिमाण बदलने पर बल का प्रभाव बदल जाता है।

# प्रशिक्षु, दाब की समझ को निम्नवत् सरल बनायें :

- स्पंज का एक टुकड़ा लें।
- इसे मेज पर रखकर इसके ऊपर लोहे का एक बाँट रखें (चित्र)
- क्या होता है?
- स्पंज दब जाता है।
- ऐसा क्यों हुआ?
- स्पंज पर लगने से दाब उत्पन्न हुआ।

## विशेष-

• चारपाई, सोफा, कुर्सी आदि पर बैठने से इनकी सतह दब जाती है। अतः स्पष्ट होता है कि किसी तल पर बल लगने के कारण दाब उत्पन्न होता है। किसी तल पर दाब, तल के क्षेत्रफल और इस पर लगाये



गये लम्बवत बल पर निर्भर करता है।

दाब = बल/क्षेत्रफल (बल का मात्रक न्यूटन तथा क्षेत्रफल का मात्रक मी $^2$  में व्यक्त किया जाता है।) दाब को P से, बल को F से तथा क्षेत्रफल को A से व्यक्त करने पर

$$P = \frac{F}{A}$$

#### दैनिक जीवन में दाब का प्रभाव-

- दफ्ती में नुकीली पिन से छेद करना आसान होता है।
- सेब को धारदार चाकू से काटने पर आसानी से कटता है।
- मजदूरों को सिर पर पगड़ी पहन कर बोझ ढोना आसान लगता है।
- स्कूली बस्ते या सामान लाने के झोले में डोरी के स्थान पर चौड़े पट्टे के प्रयोग से उसे ले जाने में आसानी होती है।

## वायु द्वारा आरोपित दाब :

वायु सभी दिशाओं में दाब डालती है।

#### क्रियाकलाप :

- एक गुब्बारा लें
- इसमें हवा भर कर फुलाएं।
- गुब्बारा क्यों फूलता है।
- वायु गुब्बारे के अन्दर सभी दिशाओं में दाब डालती है।

# वायुमण्डलीय दाब

पृथ्वी चारों ओर वायु से घिरी है। पृथ्वी के चारों ओर वायु का यह आवरण वायुमण्डल कहलाता है। वायुमण्डल लगभग 100 किमी की ऊँचाई तक फैला हुआ है। वायुमण्डल के कारण पृथ्वी की सतह पर जो दाब लगता है उसे वायुमण्डलीय दाब कहते हैं। इसे संक्षेप में वायु दाब भी कहते हैं।

प्रशिक्षु वायुदाब के प्रभाव को देखने के लिए निम्नवत् क्रियाकलाप करें।

#### क्रिया कलाप

- एक रबर चूषक लें। चित्र के अनुसार इसे मेज की चिकनी सतह पर रखें।
- इसे नीचे की ओर दबा कर छोड दें।
- अब इसे ऊपर की ओर खींचने का प्रयास करें। क्या अनुभव होता है। इसे ऊपर की ओर खींचने में

कठिनाई होती है। क्यों?

चूषक को दबाने पर इसके अन्दर की कुछ वायु बाहर निकल जाती है। वायुमंडलीय दाब कारण इस पर बाहर से वायु दाब पड़ता है फलस्वरूप उसे ऊपर खींचना कठिन हो जाता है।

#### क्रिया कलाप

- पतले टिन का एक डिब्बा लें। इसे चौथाई ऊँचाई तक पानी भरें।
- इसे कुछ देर तक गरम करें जिससे अन्दर की वायु भाप के साथ बाहर निकल जाय।
- अब डिब्बा बंद करके उसके ऊपर ठंडा पानी डालें। क्या होता है?
   डिब्बा चारों ओर से पिचक जाता है। क्यों?

डिब्बे के अन्दर की वायु गर्म करने से बाहर निकल जाती है और उसका स्थान जल वाष्प ले लेती है। डिब्बे को ठंडा करने पर वाष्प पानी में बदल जाती है और डिब्बे के अन्दर वायुदाब कम हो जाता है। बाहर की वायु सभी दिशाओं से डिब्बे पर अपेक्षाकृत अधिक दाब डालती है जिससे डिब्बा पिचक जाता है।



शीतल पेय या पानी की प्लास्टिक की खाली बोतल लें। इसे गर्म जल से आधा भरें। एक दो मिनट बाद गर्म पानी को गिराकर बोतल को तुरन्त ढक्कन लगाकर बंद कर दें। अब इसे बोतल पर ठंडा पानी डालें। देखें क्या होता है? क्या बोतल पिचक जाती है ढक्कन खोल देने पर क्या होता है?

# वायु दाब का मापन :-

किसी सतह के एकांक क्षेत्रफल पर लगने वाले वायुमण्डल की वायु के भार से वायुदाब का मान ज्ञात किया जाता है।

वायुदाब = वायु स्तम्भ का भार (न्यूटन में)/क्षेत्रफल (मी²)

# प्रामाणिक वायुदाब :-

समुद्र तल पर वायुमंडल का दाब पारे के  $76~{\rm cm}$  ऊँचे स्तम्भ के दाब के बराबर होता है। इसका मान  $1.013 \times 10^5$  न्यूटन/मीटर $^2$  या  $N/{\rm m}^2$  होता है। इसे प्रामाणिक दाब कहते हैं।







पिचका हुआ टिन का डिब्बा

#### वायुदाब का मापन

#### क्रिया कलाप

- एक मीटर लम्बी काँच की नली लें जिसका एक सिरा खुला हो।
- इसे पारे से पूरा भर लें। पारा एक तरल चमकदार
   धातु है, जो ऊष्मा पाकर फैलता है। अब पारे

से भरी नली को उलट कर उसे पारे से भरे नाद में उल्टा खड़ा करें (चित्र)। क्या होता है?



- पारे के 76 cm स्तम्भ द्वारा लगने वाला दाब नाद में भरे पारे के तल पर लगने वाले वायुमण्डलीय दाब के बराबर होता है। अतः पारे के स्तम्भ की ऊँचाई के रूप में वायुमंडलीय दाब को व्यक्त करते हैं। इसे साधारण वायुदाब मापी कहते हैं।
- वायुदाब कम होने पर नली में पारे के स्तम्भ की
   ऊँचाई 76 cm से कम हो जाती है।
- वायुदाब अधिक होने पर नली में पारे के स्तम्भ की ऊँचाई 76 cm से अधिक हो जाती है। चेतावनी

पारे का वाष्प हानिकारक है अतः इस क्रिया कलाप को प्रशिक्षु सावधानीपूर्वक स्वयं करके दिखायें।

# निर्द्रव दाब मापी :-

वायुदाब निर्द्रव दाबमापी से भी ज्ञात करते हैं। इसमें एक गोलाकार धातु का डिब्बा होता है; जिसके ऊपर की सतह (ढक्कन) पतली, लहरदार एवं वायुमण्डलीय दाब के परिवर्तन के प्रति सूक्ष्मग्राही होती है (चित्र)। डिब्बे के अन्दर की हवा निकाल दी जाती है। वायुमण्डलीय दाब बढ़ने पर ऊपरी सतह अंदर दब जाती है और दाब





कम होने पर सतह ऊपर उठ जाती है। सतह की इस गित के कारण अन्दर लगी कमानी दब जाती है या ऊपर उठ जाती है, इससे लगे लीवर से एक संकेतक जुड़ा होता है जो पैमाने पर दाब का पाठ्याँक देता है।

निर्द्रव दाबमापी घड़ी की आकृति का होता है। इसमें द्रव का प्रयोग नहीं किया जाता है। अतः इसे सरलता पूर्वक एक स्थान से दूसरे स्थान पर ले जाया जा सकता है।

# स्थान के सापेक्ष वायुदाब किस प्रकार बदलता है?

पृथ्वी की सतह से लगभग 110 मीटर ऊपर जाने पर वायुमण्डलीय दाब का मान पारे के 1 cm स्तम्भ के बराबर नीचे गिर जाता है। नैनीताल की समुद्र तल से ऊँचाई 1800 मीटर है, वहाँ पर वायुदाब का मान केवल 60 cm पारे के स्तम्भ के बराबर है।

समुद्र तल से स्थान की ऊँचाई बदलने से दाब भी बदल जाता है। अतः स्थान की ऊँचाई के सापेक्ष वायुदाब बदलता है।

# वायु दाब के उपयोग :-

जल पम्प, साइकिल पम्प, फुटबाल पम्प आदि की कार्य विधि वायु दाब पर आधारित है।

#### जल पम्प:-



चित्र क

जल पम्प की संरचना चित्रानुसार होती है। पम्प के हैंडिल को ऊपर उठाने पर पम्प के अन्दर क्या है?

चित्रानुसार पिस्टन नीचे जाता है। पिस्टन का वाल्व व<sub>1</sub> खुल जाता है और वायु बाहर निकल जाती है तथा वायु दाब के कारण पम्प की नली का वाल्व व<sub>2</sub> बंद हो जाता है। (चित्र क)

पम्प के हैंडिल को नीचे करने पर क्या होता है?

पिस्टन ऊपर उठता है। पिस्टन के नीचे वायुदाब कम
होने के कारण वाल्व व बंद हो जाता है और वाल्व व<sub>2</sub> खुल
जाता है फलस्वरूप जल बेलन के अन्दर चढ़ जाता है। (चित्र
ख) पुनः हैंडिल को ऊपर ले जाने पर क्या होता है?

पिस्टन नीचे की ओर जाता है। जल का दाब बढ़ने के कारण वाल्व व<sub>1</sub> खुल जाता है (वाल्व व<sub>2</sub> बंद रहता है) और पम्प में जल पिस्टन के ऊपर भर जाता है (चित्र ग)। हैंडिल



\_\_\_\_\_ चित्र ख को नीचे ले जाने पर क्या होता है? पिस्टन ऊपर उठता है। जल दाब के कारण वाल्व व<sub>1</sub> बंद हो जाता है। फलस्वरूप चित्रानुसार जल टोंटी से बाहर निकलने लगता है। इस समय वाल्व व<sub>2</sub> खुल जाता है और पम्प के अन्दर जल नीचे से आकर भरने लगता है। इस प्रकार पम्प के हैंडिल के ऊपर नीचे करने से लगातार जल निकलने लगता है (चित्र घ)।

#### फुटबाल पम्प :

फुटबाल पम्प द्वारा फुटबाल में हवा भरते समय ब्लैंडर में लगी पतली नली पर पम्प का निचला सिरा कस कर लगा देते हैं (चित्र)। जब पिस्टन को बाहर की ओर खींचते हैं तो चमड़े का वाशर सिकुड़ जाता है और बाहर की वायु वाशर को दबा कर बेलन के अन्दर भर जाती है। इस समय गोली रूपी वाल्व नली के ऊपरी मुँह को बन्द रखता है।



#### • पिस्टन को नीचे दबाने पर क्या होता है?

जब पिस्टन को नीचे दबाते हैं तो चमड़े का वॉशर पम्प के अन्दर वायुदाब बढ़ने के कारण फैल जाता है तथा बेलन की दीवार से सट जाता है। वेलन के अन्दर वायु दाब बढ़ने के कारण नली में गोली अपने स्थान से हट जाती है और वायु ब्लैडर में पहुँच जाती है। हत्थे को कई बार ऊपर नीचे करने से ब्लैडर में वायु भरती जाती है।

## साइकिल पम्प :-

इसमें धातु का खोखला बेलन होता है। इसके निचले सिरे पर साइकिल में हवा भरने के लिए रबर टयूब एवं हवा भरते समय पम्प को जमीन पर स्थिर रखने हेतु धातु की एक पटरी लगी होती है। इस पटरी को पैर से दबाकर पम्प को सीधा खड़ा रखते हैं। पिस्टन के ऊपरी सिरे पर हत्था लगा रहता है, हत्थे से लगी हुई एक छड़ के निचले सिरे पर एक धातु की चकती कसी होती है, जिसके ऊपर चमड़े की आकृति का वाशर लगा रहता है। यह वाशर वाल्व का कार्य भी करता है।



# साइकिल पम्प का कार्य :-

जब पम्प के हत्थे को ऊपर की ओर खींचा जाता है तब पिस्टन के नीचे खाली स्थान बढ़ने के फलस्वरूप वायु दाब कम हो जाता है। पिस्टन के ऊपर से हवा दबाव डालकर वाशर के नीचे बेलन में भर जाती है। जब हत्थे को नीचे दबाया जाता है तब पिस्टन के नीचे की वायु पर दाब बढ़ता है, जिसके कारण वाशर के किनारे फैल कर बेलन से चिपक जाते हैं और दबी हुई वायू रबर की नली से होकर ट्यूब में चली जाती है। पम्प से दबी हुई वायु वाल्व ट्यूब की सहायता से निकल कर रबर नली के द्वारा साइकिल ट्यूब में जाती है। साइकिल ट्यूब में भरी वायु के इस वाल्व ट्यूब पर बाहर से दाब डालने के कारण ट्यूब में भरी वायु बाहर नहीं निकल पाती है। पिस्टन को बार-बार ऊपर-नीचे करने से साइकिल ट्यूब में हवा भर जाती है।

#### उत्प्लावन बल

- एक डंडी लेकर उसमें बीच से धागा बाँध दें।
- अब दोनों किनारे पर दो एक जैसी वस्तुओं को बाँध दें।
- डंडी को बीच से धागे से बाँधकर उठायें। (चित्र क)
- आप देखते हैं डंडी सीधी है यदि नहीं है तो वस्तुओं की साम्य से दूरी को व्यवस्थित करें।
- अब किसी एक तरफ की वस्तु के नीचे पानी भरा बर्तन रखें।
- अब आप क्या देखते हैं?
- दूसरी तरफ की वस्तू की ओर डंडी नीचे झूक जाती है।
- स्पष्ट है कि पानी में डालने पर वस्तू के भार में कमी आयी। अतः निष्कर्ष निकलता है कि पानी में वस्तु द्वारा हटाये गये पानी द्वारा वस्तु पर ऊपर की ओर बल लगता है। यह वस्तु के भार के विपरीत दिशा में होता है। इसलिए वस्तु पानी में हल्की मालूम होती है। वस्तु के भार में यह कमी उत्प्लावन बल के कारण है।



(चित्र ख)

# आर्कमिडिज का सिद्धान्त

#### क्रिया कलाप

- लोहे के हुक लगे एक बेलन को स्प्रिंग तुला से लटका कर वायु में उसका भार नोट करें (चित्र)।
- काँच का एक टोटीदार बर्तन चित्रानुसार लें।
- इसे टोटी के स्तर तक जल से भरें।
- टोटी के मुँह पर एक स्प्रिंग बैलेंस से लटकी पॉलीथीन की थैली इस प्रकार समायोजित करें कि पानी से भरे बर्तन से निकला पानी इस थैली में एकत्र हो जाय।
- अब स्प्रिंग बैलेंस से लटके लोहे के बेलन को धीरे-धीरे पानी के अन्दर ड्बाएं। क्या होता है?
- लोहे का बेलन पानी में डुबाते जाने पर पानी निकल कर थैली में भरता जाता है।
- बेलन को धीरे-धीरे नीचे करते हुए पानी में पूर्णतः डुबा दें।

- इस अवस्था में इन दोनों तुलाओं के पाठ्याँक नोट कर लें।
- बेलन के वायु में लटकी अवस्था के पाठ्याँक में से बेलन के जल में पूर्णतः डूबी अवस्था का पाठ्याँक घटा दें।
- पाठ्याँक के इस अन्तर का क्या कारण है?
- बेलन के भार में यह कमी उत्प्लावन बल के कारण है।
- भार की इस कमी और थैली में एकत्र पानी के भार में
   क्या सम्बन्ध है? दोनों लगभग समान हैं।
   क्या निष्कर्ष निकलता है?

बेलन के भार में कमी उसके द्वारा हटाये गये पानी के भार के बराबर होती है। पानी के स्थान पर अन्य द्रव लेने पर भी समान परिणाम मिलते हैं।



जब कोई वस्तु किसी द्रव में पूर्णतः या आंशिक रूप से डुबोई जाती है तो उसके भार में कमी आती है। भार में यह कमी उस वस्तु द्वारा हटाए गए द्रव के भार के बराबर होती है। सर्वप्रथम यूनान देश के वैज्ञानिक आर्कमिडीज ने इसे ज्ञात किया था। इन्हीं के नाम पर इसे आर्कमिडीज का सिद्धान्त कहते हैं।

समान भार की वस्तु की आकृति बदलने पर उत्प्लावन बल के मान पर क्या प्रभाव पड़ता है? क्रिया कलाप 5.12

- धातु की एक कटोरी लें। कटोरी के भार के बराबर उसी धातु का टुकड़ा लें।
- कटोरी तथा धातु के टुकड़े को पानी से भरे बरतन में बारी-बारी से डालें। क्या होता है?
- धात् का ट्कड़ा डूब जाता है कटोरी जल पर तैरती रहती है। क्यों?
- धातु का टुकड़ा जितना जल विस्थापित करता है, उस पर लगा उत्प्लावन बल उस जल के भार के बराबर होता है। उत्प्लावन बल धातु के टुकड़े के भार से कम होने के कारण वह डूब जाता है।
- कटोरी की विशिष्ट आकृति के कारण उसके द्वारा हटाये गये जल का भार या उत्प्लावन बल उसके भार के बराबर होता है अतः कटोरी पानी में तैरती रहती है। भार में धातु के टुकड़े के बराबर होने पर भी कटोरी में अधिक उत्प्लावन बल लगने के कारण, कटोरी पानी में तैरती रहती है।

वस्तु पर लगने वाला उत्प्लावन बल उसकी आकृति एवं आकार पर निर्भर करता है।

#### प्लवन :-

प्रशिक्षु विचार करें द्रव में वस्तुएं तैरती और डूबती क्यों हैं (चित्र)?

- किसी वस्तु का हवा में भार = W
- ullet पानी में उस वस्तु पर लगने वाला उत्प्लावन बल  $= W_1$

वस्तु का परिणामी भार  $= W-W_1$  होगा इसे आभासी भार भी कहते हैं।

ullet यदि  $W>W_1$  क्या होगा? वस्तु द्रव में डूब जायेगी।



- ullet यदि  $W=W_1$  तब क्या होगा? तब वस्तु द्रव में पूर्णतः डूबी हुई तैरती है।
- ullet यदि  $W < W_1$  तब कया होगा?

वस्तु द्रव की सतह पर तैरती रहेगी तथा इसका कुछ अंश पानी में डूबा रहेगा। शेष भाग सतह के ऊपर रहेगा। इससे क्या निष्कर्ष निकलता है।

वस्तु का भार उत्प्लावन बल के बराबर या इससे कम होने पर वस्तु तैरती रहती है।

चूँकि वस्तु पर कार्यरत उत्प्लावन बल = वस्तु द्वारा विस्थापित द्रव का भार

इसलिए जब वस्तु का भार वस्तु द्वारा हटाए गए द्रव के भार के बराबर होता है तो वस्तु द्रव की सतह पर तैरती है इसे **प्लवन का सिद्धान्त** कहते हैं।

जिन वस्तुओं का घनत्व द्रव के घनत्व से अधिक होता है ऐसी वस्तुएं द्रव में डूब जाती हैं। घनत्व बराबर होने पर वस्तु द्रव में पूरी तरह डूबी हुई तैरती है तथा यदि वस्तु का घनत्व द्रव के घनत्व से कम है तो वस्तु आंशिक रूप से डूबी हुयी तैरती है।

#### द्रव का दाब :

#### क्रिया कलाप

- एक काँच की नली लें।
- नली के एक सिरे पर गुब्बारे को धागे से बाँधे।
- नली के ऊपरी सिरे से पानी डालें।
- पानी डालने पर क्या होता है?
- गुब्बारा फूल जाता है। जल की मात्रा बढ़ाने पर नली में जल स्तर पर क्या प्रभाव पड़ता है?
- जल स्तर बढ़ जाता है।



जल स्तर के बढ़ने से गुब्बारे के फूलने पर क्या प्रभाव पड़ता है? गुब्बारा अधिक फूलता है। ऐसा क्यों? द्रव स्तर बढ़ने से पेंदी पर दाब बढ़ जाता है।

#### निष्कर्ष

द्रव बर्तन की पेंदी पर दाब डालता है। क्या द्रव क्षैतिज दिशा में भी दाब डालता है?

#### क्रिया कलाप

- एक क्षैतिज टोटी लगा बर्तन लें।
- टोटी के मुँह पर गुब्बारा बाँधें।
- बर्तन को पानी से भरें।
- गुब्बारे की आकृति पर क्या प्रभाव पड़ता है?
- गुब्बारा फूल जाता है।
   क्या निष्कर्ष निकलता है।
   द्रव बर्तन की दीवारों पर क्षैतिज दिशा में भी दाब डालता है।
   द्रव सभी दिशाओं में दाब डालता है।

#### क्रिया कलाप

- एक टिन का डिब्बा लें (चित्र)।
- इसमें समान ऊँचाई पर चारों ओर छिद्र बनायें।
- इसे पानी से भरें। क्या होता है?

  जल सभी दिशाओं में समान रूप से निकलता है और

  जल की धाराएं समान दूरी पर गिरती है।

द्रव सभी दिशाओं में समान दाब डालता है। द्रव दाब गहराई के साथ बदलता है।

#### क्रिया कलाप

- टिना का डिब्बा, पतली कील और हथौड़ी लें।
- डिब्बे के बाहरी सतह में एक तरफ ऊपर से नीचे की ओर तीन या चार छिद्र क, ख, ग, घ बनायें।
- अब जल लाकर डिब्बे को पूरा भरें।







- आप क्या देखते हैं?
- सबसे नीचे वाले छिद्र 'घ' से जल सबसे तेजी से निकल रहा है और अधिक दूरी पर गिरता है।
- सबसे ऊपर वाले छिद्र 'क' से जल सबसे मन्द गित से निकल रहा है और सबसे कम दूरी पर गिरता है।
- निष्कर्ष निकलता है कि
   जल (द्रव) का दाब गहराई के साथ बढ़ता जाता है।

#### विशेष-

1. द्रव का दाब (P), द्रव स्तम्भ की ऊँचाई (h), द्रव के घनत्व (d) तथा गुरुत्व जनित त्वरण (g) पर निर्भर करता है :-

गणितीय रूप में, P = hdg

2. किसी बर्तन की पेंदी पर दाब भरे हुए द्रव की ऊँचाई पर निर्भर करता है।

#### मूल्यांकन

#### बहुविकल्पीय प्रश्न

- 1. किसी तल पर दाब
  - (क) उस पर बल के अनुक्रमानुपाती, उसके क्षेत्रफल के अनुक्रमानुपाती होता है
  - (ख) उस परबल के अनुक्रमानुपाती, उसके क्षेत्रफल के व्युत्क्रमानुपाती होता है
  - (ग) उस पर बल के व्युत्क्रमानुपाती, उसके क्षेत्रफल के अनुक्रमानुपाती होता है
  - (घ) उस पर बल के व्युक्तमानुपाती, उसके क्षेत्रफल के व्युक्तमानुपाती होता है
- 2. दाब अधिक होता है
  - (क) बैठने पर

(ख) दो पैर खड़े होने पर

(ग) एक पैर खड़े होने पर

(घ) लेटने पर

- वायु दाब का मात्रक होता है
  - (क) न्यूटन

(ख) न्यूटन-मीटर

(ग) न्यूटन/मीटर²

(घ) न्यूटन-मीटर²

- 4. किसी वस्तु को जल में पूर्णतः डुबाने पर उत्प्लावन बल वस्तु के भार से कम हो तो-
  - (क) वस्तु जल में डूब जायेगी

(ख)वस्तु सतह पर तैरेगी

(ग) जल में कुछ डूबी हुई तैरेगी

(घ) वस्तु सतह के नीचे पूरी डूबी हुई तैरेगी

#### अतिलघु उत्तरीय प्रश्न

- एक पत्थर को पानी में डूबोकर उठाने में उसका भार वायु में उठाने की अपेक्षा कम महसूस होता है।
   क्यों?
- वायुदाब की माप के लिए दो प्रकार के वायुदाब मापियों के नाम बताइये।
- 7. किसी द्रव में समान गहराई पर किसी दिशा में द्रव दाब P है, उसी गहराई पर अन्य दिशाओं में द्रव दाब क्या होगा?

#### लघु उत्तरीय प्रश्न

- ट्रक में चार की जगह छः टायरों का प्रयोग करने का क्या उपयोग है?
- 9. क्या कारण है कि किसी गुब्बारे को उसमें वायु से हल्की गैस भरकर छोड़ने पर वह ऊपर उठने लगता है।
- 10. साइकिल पम्प और फुटबाल पम्प में प्रमुख अन्तर क्या है?

#### दीर्घ उत्तरीय प्रश्न

- 11. सम्पर्क तल के क्षेत्रफल का दाब पर प्रभाव से संबंधित कोई दो व्यावहारिक उदाहरण दीजिए।
- 12. जल पम्प की कार्य विधि का सचित्र वर्णन कीजिए।
- 13. प्लवन का सिद्धान्त लिखिए। एक उदाहरण दीजिए।

#### आंकिक प्रश्न

- 14. सिर पर बोझा लेकर एक कुली का कुल भार 1500 न्यूटन है। यदि उसके पैरों के तलवों का कुल क्षेत्रफल .03 मी² है तो उसके द्वारा आरोपित दाब की गणना कीजिए।
- 15. 60 मीटर गहरे समुद्र की तली पर दाब क्या होगा?  $(समुद्र के जल का घनत्व = 1.01 \times 10^3 \ Kg/m^3, \ g = 10 \ m/s^2)$

# इकाई - 3 जीव जन्तुओं के वाह्य एवं आन्तरिक अंगों के कार्यों में विविधता

इस इकाई के अध्ययन से निम्नलिखित बिन्दुओं की जानकारी प्राप्त होगी—

- नियंत्रण एवं समन्वय
- वनस्पतियों/जन्तुओं में रासायनिक समन्वय
- जन्तुओं एवं वनस्पितयों के बाह्य अंगों एवं आन्तरिक अंगों के कार्यों का विवरण

क्या आपने कभी इस बात पर विचार किया है कि कुछ ऐसे कार्य जैसे चलना, फिरना, उठना, बैठना, बातें करना, आदि हम अपनी इचछा से करते हैं, पर कुछ ऐसे कार्य हैं जो हमें पता ही नहीं चलता है कि शरीर में कार्य हो रहा है जो हमारे शरीर के आन्तरिक अंगों के द्वारा सम्पादित होते हैं जैसे रक्त का परिवहन, भोजन का पाचन, ऊर्जा का प्राप्त होना, शारीरिक वृद्धि श्वसन क्रिया आदि ये सभी कार्य रासायनिक नियन्त्रण समन्वय आदि के कारण होता है। अतः हमारे शरीर में कुछ बाहरी अंग जैसे हाथ, पैर या संवेदांग आदि अपनी इच्छा से कार्य करते हैं और इन्हीं से सम्बन्धित आन्तरिक अंग अपने-अपने कार्य क्षेत्र के कार्य करते हैं जिसमें बहुत विविधता है। इसी प्रकार वनस्पतियां भी सभी जैविक कार्य सम्पन्न करते हैं। जन्तुओं के समान पौधों में बहुत बाहरी अंग नहीं होते हैं फिर भी जैसे पत्ती, जड़ों में उपस्थित रोम, फूलों में उपस्थित जनन अंग आदि बाह्य अंग है। जो पौधों के अन्दर उपस्थित आन्तरिक अंगों से मिलकर समन्वय स्थापित करके कार्यों का सम्पादन करते हैं।

सर्वप्रथम हम जानें कि सजीवों में नियन्त्रण और समन्वय की आवश्यकता होती है।

# नियंत्रण और समन्वय [CONTROL AND CO-ORDINATION]

सजीवों में नियंत्रण और समन्वय की आवश्यकता क्यों? (Why are control and co-ordination needed in living organisms?)—सभी सजीवों में जैविक क्रियाएँ हमेशा होती रहती हैं और सजीव और निर्जीव में प्रमुख अंतर भी यही है। ये जैव कार्य जीव-शरीर के भीतर मौजूद विभिन्न अंग और अंगतंत्र संपन्न करते हैं। लेकिन ये अंग कभी एकल रूप में अर्थात अकेले कार्य नहीं कर सकते। किसी विशिष्ट कार्य को कई अंग मिलकर सामूहिक रूप से संपन्न करते हैं। जब आप खाना खाने बैठते हैं तब सबसे पहले आपकी आँखें विभिन्न भोज्य पदार्थों को पहचानने में मदद करती हैं और नाक आपको उनकी सुगंध महसूस कराती है। फिर आपके हाथ उन भोज्य पदार्थों को मुख के भीतर पहुँचाते हैं। मुख में आप भोज्य पदार्थों को दाँतों द्वारा कुतरते और चबाते हैं। भोजन को भली-भाँति चबाने में आपके जबड़ों की पेशियाँ भी सहायता करती हैं। फिर भोजन का पाचन आपने मुख में ही लार द्वारा आरंभ हो जाता है और जीभ भोजन को पाचन नली के भीतर ठेलने का कार्य करती है। अतः, आपने देखा कि खाना खाते समय कितने ढेर सारे अंग और विभिन्न

अंगतंत्र अलग-अलग, पर एक ही साथ, कार्य करते हैं, और वह भी एक ही लक्ष्य के लिए, अर्थात भोजन करने के लिए। इनमें किसी भी एक अंग का कार्य गड़बड़ा जाए तो परिणाम क्या होगा? आपको भोजन करने में दिक्कत महसूस होगी। जब आप दौड़ते हैं तब आपके हृदय के धड़कने की गित भी अपने-आप तेज हो जाती है, क्योंकि पेशियों को अधिक ऑक्सीजन आपूर्ति की आवश्यकता होती है। दौड़ने में पेशियाँ अपेक्षाकृत अधिक ऊर्जा खर्च करती हैं। लेकिन जब आप दौड़ना बंद कर देते हैं तब हृदय की धड़कन भी अपने-आप सामान्य होने लगती है।

वास्तव में, जब कोई भी जीव (हम भी) अपना कार्य करता है तब शरीर के कई अंग साथ-साथ, आपसी तालमेल में, कार्य करते हैं। इन अंगों के मध्य समन्वय स्थापित होता है। िकंतु इन सब अंगों के समन्वयन के साथ-साथ उनका नियंत्रण भी उतना ही जरूरी है, क्योंकि तभी सारे अंग व्यवस्थित ढंग से कार्य करेंगे। दूसरे शब्दों में, एक तंत्र द्वारा संपन्न कार्य और उसका समय अन्य तंत्रों द्वारा संपन्न कार्यों और उनके समय से समन्वित होता है। अतः, जीवों में विभिन्न कार्यों के कुशल संचालन हेतु विभिन्न अंग एवं अंगतंत्रों का समन्वय और नियंत्रण आवश्यक ही नहीं, अनिवार्य भी है।

#### समस्थैतिकी

#### (Homeostasis)

Homeostasis लैटिन भाषा का शब्द है, जिसका अर्थ है—Homeo = the same (सम); statis = situation (स्थित), अर्थात same state (समस्थित)। समस्थौतिकी या होमिओस्टैसिस (homeostasis) है क्या? सभी जीवों के बाह्य वातावरण तथा शरीर के भीतर के वातावरण में संतुलन स्थापित होना आवश्यक है। उदाहरण के लिए गर्मी के मौसम में हमें गर्मी काफी प्रतीत होती है। गर्मियों में हमारे शरीर से पसीना भी अधिक निकलता है। जब यह जलीय पसीना वाष्पित होता है तब हमको शीतलता महसूस होती है। त्वचा में ठंडक महसूस होने के फलस्वरूप हम गर्मी का सामना करने में सक्षम होते हैं। लेकिन दूसरी ओर शरीर से पसीना अधिक मात्रा में निकलने से शरीर के भीतर जल की मात्रा में काफी कमी हो जाती है। जल की इस कमी को पूरा करने के ध्येय से ही हमें प्यास अधिक लगती है और हम गर्मी के दिनों में अपेक्षाकृत पानी बहुत अधिक मात्रा में पीते हैं। पानी पीने से शरीर के भीतर पानी की कमी पूरी हो जाती है। अब इसका क्या तातपर्य हुआ? पसीने का निकलना और प्यास का लगना दोनों क्रियाएँ एक ही ध्येय की पूर्ति के लिए ही हैं। वह क्या? वह ध्येय है, शरीर में जल की मात्रा और शरीर के तापमान को अनुकृलतम स्थिति (optimum state) में बरकरार रखना, अर्थात् दोनों (शरीर में जल-मात्रा और शरीर-तापमान) को सामान्य बनाए रखना।

हम ज्यों-ज्यों पहाड़ की ऊँचाई पर चढ़ते जाते हैं, त्यों-त्यों हमें ऑक्सीजन की कमी महसूस होती है। पर्वतारोहियों को पर्वत की ऊँची चोटियों पर पहुँचने के बाद ऑक्सीजन की कमी महसूस होने लगती है, जिससे उन्हें श्वास लेने में किटनाई प्रतीत होती है। लेकिन इसके फलस्वरूप उनके शरीर में, शरीर-क्रियात्मक स्थितियों में, परिवर्तन होते हैं, जिससे उनके शरीर में लाल रुधिर कोशिकाओं का निर्माण अपेक्षाकृत काफी अधिक संख्या में होने लगता है और पर्वतारोही ऑक्सीजन की कमी से निपटने में समर्थ हो जाते हैं। पर्वतारोहियों का आंतरिक वातावरण उनके बाह्य वातावरण से सामंजस्य स्थापित कर दोनों स्थितियों में संतुलन बनाए रखने की कोशिश करता है, तािक शरीर-कार्य सुचार रूप से एवं कुशलतापूर्वक संचािलत

होते रहें। अतः, जीव के आंतरिक और बाह्य वातावरण में समस्थिति बनाए रखने की क्षमता को समस्थैतिकी या होमियोस्टैसिस (homeostasis) कहते हैं। शरीर-क्रियात्मक कार्यों का इस प्रकार का नियंत्रण उच्च जीवों में उतना ही महत्त्वपूर्ण गुण है जितना कि समन्वय। अतः, जीवों, खासतौर से उच्च जीवों में, समन्वय और नियंत्रण दोनों की ही भूमिका समानरूप से महत्वपूर्ण है।

एककोशिकीय जीवों में समन्वय एवं नियंत्रण (Co-ordination and control in unicellular organisms)— एककोशिकीय जीवों, जैसे—अमीबा, का शरीर केवल एक अकेली कोशिका का बना होता है। यही अकेली कोशिका विभिन्न जैव क्रियाओं का संचालन भी करती है और यही उन कार्यों का समन्वय और नियंत्रण भी करती है। किंतु उन एककोशिकीय जीवों में, जिनमें अंगक (organelles) होते हैं, थोड़ी समन्वय की जरूरत होती है, जो कोशिका खुद ही कर लेती है।

बहुकोशिकीय जीवों में समन्वय और नियंत्रण (Co-ordination and control in multicellular organisms)— अभी आपको बताया गया है कि बहुकोशिकीय जीवों, जैसे—स्तनधारी, में भिन्न-भिन्न कार्यों के संचालन के लिए अलग-अलग अंग और अंगतंत्र होते हैं। ये अंग एवं अंगतंत्र आपसी ताल-मेल में कार्य करते हैं, जिनका समन्वय और नियंत्रण होता है। अंगों के समन्वय और नियंत्रण हेतु जिटल पर कुशल तंत्र भी विकसित होते हैं, जिनके द्वारा समन्वय और नियंत्रण का महत्त्वपूर्ण कार्य सतत संपन्न होता रहता है। बहुकोशिकीय जीवों में समन्वय और नियंत्रण की भूमिका दो तरह से संपन्न होती है—A. रासायनिक (chemical) और B. तंत्रिकीय (nervous)। लेकिन इस संदर्भ में पौधे और जंतुओं में थोड़ी भिन्नता होती है। पादपों में समन्वय और नियंत्रण केवल रासायनिक होता है, तंत्रिकीय नहीं, क्योंकि पौधों में तंत्रिकीय नियंत्रण हेतु तंत्रिकातंत्र का अभाव होता है। निम्न जंतुओं जैसे—हाइड्रा में भी तंत्रिकातंत्र अल्पविकसित होता है। केवल उच्च जंतुओं में ही तंत्रिकीय समन्वयन एवं नियंत्रण हेतु सुस्पष्ट और विकसित तंत्रिकातंत्र होता है।

# A. रासायनिक समन्वय और नियंत्रण (Chemical Co-ordination and Control)

इस प्रकार के समन्वय और नियंत्रण में जीव-शरीर में उपस्थित विशिष्ट कोशिकाओं द्वारा कुछ रासायनिक पदार्थों का स्नाव या उत्पत्ति होती है, जिन्हें **हार्मोन** (hormones) कहते हैं। ये हार्मोन जिटल कार्बीन रासायनिक पदार्थ होते हैं। विभिन्न प्रकार के हार्मोन शरीर में अलग-अलग प्रकार की जैविक क्रियाओं का नियंत्रण और समन्वय करते हैं। पादपों और जंतुओं में ये **हार्मोन** अलग-अलग तरह के होते हैं।

हार्मीन की दो खास बातें होती हैं (Two important things about hormones)—एक तो ये बहुत थोड़ी मात्रा में ही शरीर के भीतर स्नावित होते हैं, लेकिन यह थोड़ी मात्रा ही जीव के विभिन्न कार्यों के नियंत्रण एवं समन्वयन हेतु पर्याप्त होती है। दूसरी बात यह है कि इनका निर्माण शरीर में किसी खास जगह पर होता है, जहाँ से इनका स्थानांतरण अन्य जगहों में होता है जहाँ वे अपना प्रभाव डालते हैं।

# पौधों में रासायनिक समन्वय (Chemical Co-ordination in Plants)

पौधों में सभी कार्यों का समन्वय कुछ रासायनिक पदार्थों द्वारा होता है। इन पदार्थों को साधारणतः **पादप-हार्मोन** या **फाइटोहार्मोन** (phytohormone) कहते हैं। ये पौधों के ऊतकों द्वारा स्नावित होते हैं। ये रासायनिक पदार्थ एक प्रकार के कार्बनिक यौगिक होते हैं जो पौधों के विभिन्न भागों में जाकर उनकी क्रियाओं का नियंत्रण करते हैं। पादप-हार्मोन निम्नलिखित प्रकार के होते हैं—

1. ऑक्जिंस (Auxins)—ये कार्बनिक यौगिकों के समूह हैं जो पौधों में कोशिका-विभाजन तथा कोशिकादीर्घन (cell elongation), अर्थात पादप-वृद्धि में भाग लेते हैं। इंडोल एसिटिक एसिड (Indole Acetic Acid = I.A.A.) एवं नेफ्थैलिन एसिटिक एसिड (Naphthalene Acetic Acid = N.A.A.) इनमें मुख्य उदाहरण हैं। स्तंभ या तने के जिस ओर अधिक ऑक्सिन मौजूद होते है उधर वृद्धि अधिक होती है। लेकिन, जड़ में जिधर अधिक हार्मोन होता है उधर वृद्धि कम होती है।

कार्य (Functions)—(i) ऑकिजंस कोशिका-दीर्घन द्वारा स्तंभ या तने की वृद्धि में सहायक हैं।

- (ii) ये वृद्धि-निरोधी (growth inhibitor) होते हैं और जड़ एवं स्तंभ की वृद्धि नियंत्रण में रखते हैं।
- (iii) ये बीजहीन फल-उत्पादन में सहायक होते हैं।
- (iv) पत्तियों के झड़ने और फलों के गिरने पर भी ऑक्जिन का नियंत्रण होता है। कभी-कभी ऑक्जिन का सांद्रण तने में अधिक होता है जिसके फलस्वरूप फल पकने के पूर्व ही गिर जाता है, जिसे हम ऑक्जिन के प्रयोग से रोक सकते हैं।
- (v) गेहूँ, मक्का आदि के खेतों में विभिन्न प्रकार के खर-पात (weeds) ऑक्सिन के प्रयोग से नष्ट कर दिए जाते हैं। अतः, ये खर-पातनाशक हैं।
- 2. जिबरैलिंस (Gibberellins)—ये भी जटिल कार्बनिक यौगिक है एवं इस वर्ग का मुख्य हार्मोन जिबरैलिक एसिड (gibberellic acid) है।

कार्य (Functions)—(i) जिबरैलिंस कोशिका-विभाजन तथा कोशिका दीर्घन द्वारा स्तंभ या तने को अधिक मात्रा में लंबा करते हैं, जिसके फलस्वरूप अनेक पौधे बृहत आकार (giant-sized) के हो जाते हैं।

- (ii) ये बीजहीन फलों के उत्पादन में भाग लेते हैं।
- (iii) जिबरैलिंस के छिड़काव (spray) द्वारा बृहत आकार के फल तथा फूलों का उत्पादन किया जाता है।
- (iv) ये काष्टीय पौधों में एधा या कैंबियम की सक्रियता को बढ़ाते हैं।
- (v) बीजों के अंकुरण के समय जिबरैलिंस बनते हैं जो एञ्जाइम को सिक्रिय करते हैं। यह एञ्जाइम बीज के स्टार्च का पाचन करता है, इसलिए बियर आदि बनाने में भी जिबरैलिंस का प्रयोग होता है।
  - (vi) जिबरैलिंस बीजों की प्रसुप्ति भंग कर उनको अंकुरित होने के लिए प्रेरित करते हैं।
- 3. काइनिन्स (Kinins)—ये सभी कार्बनिक रासायनिक यौगिक हैं एवं काइनेटिन (kinetin) इसका एक उदाहरण है।

कार्य (Functions)—(i) ये सभी वृद्धि-हार्मीन हैं एवं कोशिकाद्रव्य विभाजन (cytokinesis) में सहायक हैं।

- (ii) काइनिन्स RNA एवं प्रोटीन बनाने में सहायक हैं।
- (iii) ये कोशिका-दीर्घन में भी सहायक है।
- (iv) ऑक्जिन की उपस्थिति में काइनिन्स स्तंभों एवं पर्णवत्तों के दीर्घन तथा पत्तियों के प्रसरण को तीव्रता से संपन्न करते हैं।
  - (v) ये पार्श्व कलिकाओं (lateral buds) की वृद्धि आरंभ करते हैं।
  - (vi) ये बीज-अंकुरण को प्रेरित करते हैं।
- 4. कैलिन्स (Calins)—ये हार्मीन पौधे के एक अंग से स्नावित होते हैं तथा अन्य अंगों की वृद्धि एवं कार्यों का नियंत्रण करते हैं। कैलिन्स निम्नलिखित प्रकार के होते हैं—
- (i) राइजोकैलिन (Rhizocaline)—यह पत्तियों में स्नावित होता है तथा जड़-वृद्धि की क्रिया का नियंत्रण करता है।
- (ii) फाइलोकैलिन (Phyllocaline)—यह बीजपत्रों (cotylcdons) में बनता है, लेकिन पत्तियों की वृद्धि तथा वर्द्धन का नियंत्रण करता है।
- (iii) कॉलोकैलिन (Caulocaline)—यह जड़ में बनता है एव ऑक्जिन की सहायता से स्तंभ के दीर्घन एवं पार्श्व किलकाओं के निर्माण में भाग लेता है।
- 5. फ्लोरिजेन्स (Florigens)—ये पत्ती में बनते हैं, लेकिन फूलों के खिलने में मदद करते हैं। इसलिए, इन्हें फूल खिलानेवाले हार्मीन (flowering hormones) भी कहते हैं।
- 6. द्राउमैटिन (Traumatin)—यह एक प्रकार का डाइकार्बोक्जिलिक अम्ल (dicarboxylic acid) है। ट्राउमैटिक अम्ल (traumatic acid) इसका उदाहरण है। इसका निर्मण घायल कोशिका (injure cells) में होता है। जख्म (wound) के निकट स्वस्थ मृदुतक या पैरेनकाइमेटस (parenchymatous) कोशिकाएँ कोशिका-विभाजन एवं वृद्धि की क्रिया प्रारंभ करती हैं, जिससे जख्म भर जाता है।
- 7. ABA हॉर्मोन—आधुनिक अनुसंधानों के फलस्वरूप हाल ही में एक विशिष्ट प्रकार के हार्मोन का पता लगाया गया है। इसे ABA हार्मोन या एबसिलिक अम्ल (abscilic acid) कहते हैं।

कार्य—(i) इसकी उपस्थिति तने की वृद्धि को मंद करते है।

- (ii) यह स्टोमैंटल रंधों के आयतन को नियंत्रित कर पौधों में होनेवाले वाष्पोत्सर्जन की क्रिया को रोकता अथवा कम करता है।
- (iii) इसकी एक विशेषता यह भी है कि इसकी उपस्थिति भी पौधे में पत्ती के झड़ने की क्रिया की दर में वृद्धि करती है।

# जंतुओं में रासायनिक समन्वय (Chemical Coordination Animals)

पौधों की तरह जंतुओं में भी कुछ विशिष्ट रासायनिक भौतिक विभिन्न शरीर क्रियात्मक कार्यों को नियमित एवं समन्वित करते हैं। इन विशिष्ट रासायनिक पदार्थों का स्नाव जंतु के शरीर में स्थित विशिष्ट ग्रंथियां द्वारा होता है, जिन्हें अन्तः ग्रंथियाँ या एंडोक्राइन ग्लांड्स कहते हैं। ये अंतः स्नावी ग्रंथियाँ क्या हैं?

अंतःस्त्रावी ग्रंथियाँ (Endocrine glands)—बहिस्तिवी ग्रंथियों के विपरीत अंतःस्रावी ग्रंथियाँ निलकाविहीन (ductless) होती हैं। अतः इन्हें निलकाविहीन ग्रंथियाँ (ductless glands) भी कहते हैं। ये ग्रंथियाँ अपने स्नाव को कैसे मुक्त करती हैं? अंतः स्नावी ग्रंथियाँ निलका के अभाव में अपन स्नाव को सीधे मिधर-परिसंचरण (blood circulation) में मुक्त करती हैं। इन ग्रंथियों से स्नाव निकलकर पहले ऊतक ... (tissue fluid) में विसरित हो जाते हैं, जहाँ से फिर ये रुधिर-केशिकाओं (blood capillaries) द्वारा अवशोषित होकर रुधिर-परिसंचरण में पहुँचा दिए जाते हैं। इसीलिए इन ग्रंथियों द्वारा स्नावित स्नाव को अंतःस्नाव या हार्मोन (hormone) कहते हैं। हार्मोन फिर रुधिर के साथ उन अंगों (लक्ष्य अंगों) में पहुँच जाते हैं जहाँ इनका प्रभाव होना होता है। पीयूष ग्रंथि, थाइरॉयड ग्रंथि, अधिवृक्क ग्रंथि आदि प्रमुख अंतः स्नावी ग्रंथियाँ हैं।

हार्मोन (Hormone)—ये विशिष्ट कार्बनिक यौगिक होते हैं। इनका स्रवण (secretion) बहुत कम मात्रा में होता है। लेकिन हार्मोनों की बहुत थोड़ी मात्रा विभिन्न शरीर-क्रियात्मक कार्यों के समन्वय और नियंत्रण के लिए पर्याप्त होती है। जब अंतःस्त्रावी ग्रंथियों द्वारा स्नावित हॉर्मोन रुधिर-परिसंचरण के साथ अपने लक्ष्य अंगों (target organs) में पहुँचते हैं तब वे उन अंगों में कुछ परिवर्तनों को प्रेरित करते हैं। अतः हॉर्मोन एक स्विच (switch) या प्रेरक का कार्य करते हैं। तंत्रिकीय समन्वय और नियंत्रण की अपेक्षा हॉर्मोन-नियंत्रण और समन्वय का प्रभाव अपेक्षाकृत धीमे-धीमे होता है, परंतु इनके द्वारा उत्पन्न प्रभाव अधिक देर तक (टिकाऊ) रहता है। हार्मोनों की रासायनिक संरचना काफी भिन्न और जटिल होती है। कुछ हॉर्मोनों द्वारा शरीर में होनेवाली विभिन्न रासायनिक क्रियाओं का समन्वय और नियंत्रण भी होता है। इन हार्मोनों को रासानिक समन्वयक (chemical co-ordinator) कहते हैं। अब हम मनुष्य में पाई जानेवाली अंतःस्रावी ग्रंथियाँ, उनके द्वारा स्नावित हार्मोन और उनके द्वारा उत्पन्न प्रभाव का अध्ययन, थोड़ा विस्तार से, करेंगे।

मनुष्य में विभिन्न अंतःस्रावी ग्रंथियाँ, उनके द्वारा स्नावित हॉर्मोन एवं उनके विभिन्न प्रभाव

| ग्रंथि                | हॉर्मोन का नाम              | कार्य                           |
|-----------------------|-----------------------------|---------------------------------|
| 1. पीयूष या पिट्यूटरी | (i) वृद्धि या सोमैटोट्रॉपिक | कोशिकाओं की वृद्धि का नियंत्रण। |
|                       | हॉर्मीन (STH)               |                                 |
|                       | (ii) थाइरोट्रापिक हॉर्मोन   | थाइरॉइड ग्रंथि के स्नाव का      |
|                       | (TSH)                       | नियंत्रण                        |
|                       |                             |                                 |

|                        | (iii) एड्रीनोकॉर्टिकोट्रॉपिक        | एड्रीनल वल्कुट द्वारा स्नाव का               |
|------------------------|-------------------------------------|----------------------------------------------|
|                        | हॉर्मोन (ACTH)                      | नियंत्रण।                                    |
|                        | (iv) फॉलिकल उत्तेजक                 | नर के वृषण में शुक्राणुजनन का                |
|                        | हॉर्मोन (FSH)                       | एवं मादा के अंडाशय में फॉलिकल                |
|                        | की वृद्धि का नियंत्रण।              |                                              |
|                        | (v) ल्यूटीनाइजिंग हॉर्मोन           | पीतिपंड या कॉर्पस ल्यूटियम का                |
|                        | (LH)                                | निर्माण, वृषण से एंड्रोजेन एवं अंडा-         |
|                        | शय से प्रोजेस्टेरॉन के स्राव हेतु   |                                              |
|                        | अंतराली कोशिकाओं का उद्दीपन।        |                                              |
|                        | (vi) ऐंटीडाइयूरेटिक हॉर्मोन         | शरीर में जल-संतुलन, अर्थात वृक्क             |
|                        | द्वारा मूत्र की मात्रा का नियंत्रण। |                                              |
| 2. थाइरॉइड             | (i) थाइरॉक्सिन                      | वृद्धि तथा उपापचय की गति का                  |
|                        | नियंत्रण।                           |                                              |
| 3. पैराथाइरॉइड         | (i) पैराथाइरॉइ हॉर्मोन              | रक्त में कैल्सियम की कमी होने से             |
|                        | यह स्रावित होता है।                 |                                              |
|                        | (ii) कैल्सिटोनिन                    | रक्त में कैल्सियम अधिक होने से यह मुक्त होता |
|                        |                                     | है।                                          |
| 4. अधिवृक या एड्रीनल   | (i) ग्लूकोकार्टिक्वायड्स            | कार्बोहाइड्रेट, प्रोटीन एवं वसा-             |
|                        | A. वल्कुट (कॉर्टेक्स)               | उपापचय का नियंत्रण।                          |
|                        | (ii) मिनरलोकॉर्टिक्वायड्स           | वृक्क-निलकाओं द्वारा लवण के                  |
|                        | पुनः अवशोषण एवं शरीर में            |                                              |
|                        | जल-संतुलन का नियंत्रण।              |                                              |
|                        | (iii) पेशियों, हड्डियों, बाह्यलिंग  |                                              |
|                        | एवं यौन-आचरण का नियंत्रण।           |                                              |
|                        | B. मध्यांश (मेडुला)                 | (i) एपिनेफ्रीन एवं रक्तचाप का नियंत्रण।      |
|                        | (ii) नॉरएपिनेफ्रीन                  |                                              |
| 5. अग्न्याशय में लैंगर | (i) इंसुलिन एवं                     | रुधिर में शर्करा की मात्रा का                |
| 1                      | <u></u>                             |                                              |

| हैंस की द्वीपिकाएँ | (ii) ग्लूकागॉन                      | नियंत्रण।                        |
|--------------------|-------------------------------------|----------------------------------|
| 6. अंडाशय          | (i) एस्ट्रोजेन                      | मादा-अंग के परिवर्द्धन का        |
|                    | नियंत्रण।                           |                                  |
|                    | (ii) प्रोजेस्टेरॉन                  | स्तन-वृद्धि, गर्भाशय एवं प्रसव   |
|                    | में होनेवाले परिवर्तनों का नियंत्रण |                                  |
|                    | (iii) रिलैक्सिन                     | प्रसव के समय होनेवाले परिवर्तनों |
|                    | का नियंत्रण।                        |                                  |
| 7. वृषण            | (i) टेस्टोस्टेगॅन                   | नर-अंग के परिवर्धन एवं यौन-      |
|                    | आचरण का नियंत्रण।                   |                                  |

उक्त हार्मीन्स विविध ग्रन्थियों द्वारा स्रावित होते हैं एवं वृहद कार्यों में सामान्य स्थापित करते हैं।

#### क्रिया विधि

प्रशिक्षक प्रशिक्षार्थी से प्रश्न करें—

- हमारे शरीर का कौन सा तन्त्र कार्य करने में सहायता करता है?
- हमारे शरीर में कितने प्रकार की क्रियायें होती है?

पेशी तन्त्र का पूर्व में चर्चा की जा चुकी है परन्तु हमारे शरीर में जितने भी बाहरी अंग है, जैसे हाथ, पैर, गर्दन आदि में गित पेशियों के कारण ही होती है। अब कौन सी पेशी कौन सा कार्य करती है या किसी प्रकार का कार्य करती है इसकी जानकारी प्राप्त करेंगे।

# शरीर की क्रियाएं तथा पेशियाँ (बाह्य अंगों के कार्य)

#### पेशी तंत्र (MUSCULAR SYSTEMS)

पेशियां शरीर के कुल भार का लगभग 40% भाग बनाती हैं। अधिकांश जन्तुओं में इनका संबंध संचलन या गित से होता है। पेशियां लम्बी कोशिकाओं की बनी होती हैं जिन्हें पेशी तन्तु (muscle fibres) कहते हैं। पेशी तन्तुओं में संकुचन एवं उत्तेजनशीलता (contractility and excitability) के गुण होते हैं।

# पेशियों के प्रकार (Types of Muscles)

मूल रूप से पेशियां तीन प्रकार की होती हैं :

1. कंकाल पेशियां (Skeletal Muscles)—इनको रेखित (striated), पट्टित (stripped) या ऐच्छिक (voluntary)

पेशियां भी कहते हैं। ये जन्तु की संचलन गितयों में भाग लेती हैं। तेजी से संकुचन के कारण इनमें शीघ्र ही श्रांति हो जाती है। इनके तन्तु ऐच्छिक तंत्र (voluntary nervous system) की तंत्रिकाओं से जुड़ी होती हैं। कंकाल पेशियां अस्थियों से जुड़ी होती हैं। इनके दोनों सिरे दो भिन्न अस्थियों से जुड़े रहते हैं। किसी विशेष पेशी के संकुचन करने पर लीवर की भांति एक अस्थि दूसरी अस्थि के समीप आ जाती है। दोनों अस्थियों के बीच की असंधि इनके बीच आलम्बक (fulcrum) का कार्य करती है।

- 2. अरेखित पेशियां (Unstripped Muscles)—इनको चिकनी (smooth) या अनैच्छिक (involuntary) पेशियां भी कहते हैं। ये आहार नाल, रुधिर वाहिनियों व अन्य आन्तरांगों में पायी जाती हैं। इनमें संकुचन धीमी गति से होता है, अतः श्रांति भी विलंब से ही होती है। अस्थियों से इन पेशियों का कोई लगाव नहीं होता है। आंतरांगों से संबंधित होने के कारण इनको आंतरांग पेशियां (visceral muscles) भी कहते हैं। इनमें स्वायत्त तंत्रिका तंत्र का तंत्रिकान्यास होता है।
- 3. हृद् या कार्डियक पेशियां (Cardiac Muscles)—ये केवल हृदय में मिलती है तथा जीवनपर्यन्त बिना श्रांति के कार्य करती रहती है।

# ऐच्छिक या कंकाल पेशियां (Voluntary or Skeletal Muscles)

शरीर के विभिन्न भागों में गतियां कंकाल पेशियों के कारण होती हैं। हमारे शरीर में पेशी तंत्र का अधिकांश भाग रेखित पेशियों का बना होता है।

कंकाल पेशियों को **ऐच्छिक पेशियां** भी कहते हैं। ये शरीर में अस्थियों से जुड़ी रहती हैं। इन पेशियों के सिकुड़ने तथा फैलने से हम अपनी इच्छानुसार अपने हाथ-पैर हिला सकते हैं तथा आंखों को खोल व बंद कर सकते हैं। ऐच्छिक पेशियां हाथ, पैर, जबड़े, आंख, गर्दन तथा शरीर के अन्य स्थानों में पायी जाती हैं।

# कंडरा व स्नायु (Tendon and Ligament)

अस्थियों की संधियों पर होने वाली गितयां संधि करने वाली अस्थियों से लगी कंकाल पेशियों द्वारा होती हैं। संधियों पर अस्थियों को अपनी स्थिति में बनाये रखने के लिए लचीले संयोजी ऊतक से बने स्नायु (ligaments) होते हैं ये अस्थियों के संधि तलों को साथ-साथ बांधे रखते हैं।

कंकाल पेशियों **कंडराओं** (tendons) द्वारा अस्थियों से जुड़ी रहती हैं। कंडरायें श्वेत रेशेदार संयोजी ऊतक के कोलेजन रेशों (collagen fibres) की बनी होती हैं। कंडरायें कंकाल पेशियों के सिरों पर स्थित होती हैं। इस प्रकार की पेशियों की उत्पत्ति किसी एक अस्थि पर होती हैं तथा इनका निवेशन दूसरी अस्थि पर होता है।

रेखित पेशी का अस्थियों से जुड़ना (Attachment of Stripped Muscle to Bones)—रेखित या कंकालीय पेशियां एक या दोनों सिरों द्वारा एक या एक से अधिक अस्थियों से जुड़ी होती हैं। प्रत्येक पेशी का मध्य भाग फूला हुआ होता है। इसे belly कहते हैं। इसके दोनों सिरों पर टेंडन (tendon) होता है। प्रायः पेशी का एक सिरा अचल

अस्थ (immovable bone) से जुड़ा होता है। इसे उद्गम या मूल सिरा (origin) कहते हैं। पेशी का दूसरी सिरा चल अस्थ (movable bone) से जुड़ा होता है। इसको निवेशन (insertion) कहते हैं। एक पेशी में एक से अधिक उद्गम व निवेशन भी हो सकते हैं।



प्रायः ऐच्छिक या रेखित पेशियां जोड़ों में अस्थि से जुड़ी रहती हैं। हमारी ऊपरी बाहु में दिशिरस्क या **बाइसेप्स** (biceps) तथा त्रिशिरिस्क या **ट्राइसेप्स** (triceps) पेशियां होती हैं। ऊपर की ओर बाइसेप्स पेशी दो **कंडराओं** (tendons) द्वारा स्कैपुला से तथा नीचे की तरफ एक कंडरा द्वारा अग्रबाहु की रेडियस अस्थि से जुड़ी रहती है। यह एक आकोचनी (flexor) पेशी है। ट्राइसेप्स पेशी बाहु के निचले भाग में होती है। पर ऊपर की ओर तीन कंडराओं द्वारा स्कैपुला से तथानीचे की तरफ कंडरा द्वारा अल्ना (ulna) अस्थि से जुड़ी रहती है। यह एक प्रसारिणी पेशी है।

इसी प्रकार मनुष्य की टांग में अकोचनी (flexor) पेशी तथा प्रसारिणी (extensor) पेशियां पायी जाती हैं। गैस्ट्रोनिमीयस (gastronemius) पेशी टीबियोफिबुला (tibiofibula) की निचली सतह से जुड़ी रहती है। इसका ऊपरी कंडरा फीमर अस्थि के निचले सिरे से तथा टीबियोफिबुला के ऊपरी सिरे से जुड़ी रहती है तथा इसकी निचली कंडरा जिसे टेन्डन एशिलिस कहते हैं, पैर में तलुवे से जुड़ी रहती है। इस पेशी में संकुचन से इस पेशी की लम्बाई कम हो जाती है जिसके फलस्वरूप टांग सीधी हो जाती है। संकुचन होने पर पैर मुड़कर अपनी पहली अवस्था में आ जाता है।



मनुष्य में पेशीन्यास : A. स्त्री में पेशीन्यास का सामने का दृश्य; B. पुरुष में पेशीन्यास का पीछे का दृश्य।

## कार्य के आधार पर पेशियों का वर्गीकरण (Classification of Muscles based on Functions)

- 1. आकोचनी या फलेक्सर पेशियां (Flexor Muscles)—इन पेशियों के सिकुड़ने से सम्बन्धित अस्थि अन्दर या पीछे की ओर खिंचती है जिससे दोनों अस्थियां समीप आती हैं और उनके बीच का कोण कम हो जाता है।
- 2. प्रसारिणी या एक्सटेन्सर पेशियां (Extensor Muscles)—इन पेशियों के सिकुड़ने से सम्बन्धित संरचना आगे या बाहर की ओर धकेली जाती है जिससे वह अपनी पूर्व स्थिति पर आ जाती है।
- 3. अपवर्तनी या एब्डक्टर पेशियां (Abductor Muscles)—इन पेशियों के सिकुड़ने से सम्बन्धित अस्थि मध्य रेखा से दूर जाती है।

**4. अभिवर्तनी या एडक्टर पेशियां** (Adductor Muscles)—इनके सिकुड़ने से सम्बन्धित अस्थि मध्य रेखा की ओर खींची जाती है।



5. घूर्णी या रोटेटर पेशियां (Rotator Muscles)—इनके सिकुड़ने पर सम्बन्धित अस्थि अपनी धुरी पर घूमती है।

- 6. उन्नयनी या लीवेटर पेशियां (Levator Muscle)—यह सम्बन्धित अस्थि या अंग को ऊपर उठाती है।
- 7. अवनयनी या डिप्रेसर पेशियां (Depressor Muscles)—यह सम्बन्धित अंग को नीचे गिराती हैं।
- 8. आतानक या टेंसर पेशियां (Tensor Muscles)—इनके सिकुड़ने से सम्बन्धित संरचना में और अधिक तनाव या खिंचाव आ जाता है।
- 9. उन्ताननी या सुपिनेटर (Supinators)—इनके सिकुड़ने से अगली भुजा घूमती है तथा हथेली ऊपर की ओर घुमायी जा सकती है।
  - 10. अवताननी या प्रोनेटर (Pronators)—ये हथेली को नीचे की ओर घुमाती हैं।

## जीव जन्तुओं के आन्तरिक अंगों के कार्य

शरीर के मुख्यतः आन्तरिक अंगों के समस्त कार्य हमारे संवेदांग से सम्बन्धित होते हैं। हमारे संवेदांग निम्नलिखित हैं—

- 1. श्रवणेन्द्रियाँ या श्रवणोसन्तुलन इन्द्रियाँ
- 2. चक्षुन्द्रियाँ या दर्शनेन्द्रियाँ
- 3. घ्राणेन्द्रियाँ
- 4. स्वादेन्द्रिया
- 5. त्वक ज्ञानेन्द्रियाँ

जैसे श्रवणेन्द्रियों द्वारा हम सुनने का कार्य करते हैं। इस कार्य में बाह्य अंग जैसे कर्ण पल्लव व आन्तरिक अंग हैं—कर्ण पर्दा, मध्य कर्ण आदि-कर्ण पल्लव ध्वनि तरंगों को सुनता है व फिर तन्त्रिका द्वारा मस्तिष्क में पहुंचती है और वहां पर पहचानने के बाद उसका उत्तर मिलता है। अर्थात् समझ पाते हैं कि किसकी आवाज है।

निम्नलिखित सारिणी में बाह्य अंग से सम्बन्धित आन्तरिक अंग एवं उनके (जन्तुओं एवं वनस्पतियों) द्वारा किये जाने वाले कार्य दर्शाये गये हैं।

| <del></del><br>क्रम | तन्त्र का | बाह्य               | <br>कार्य                | आन्तरिक अंग         | कार्य                                |
|---------------------|-----------|---------------------|--------------------------|---------------------|--------------------------------------|
| संख्या              |           | अंग                 | ,                        |                     |                                      |
| 1.                  | पोषण तथा  | हाथ, मुंह, जीभ,     | हाथों द्वारा भोजन मुंह   | ग्रास नली, आमाशय,   | ग्रास नली द्वारा भोजन का आगे बढ़ना,  |
|                     | पाचन      | एवं नाक             | तक पहुंचना, जीभ में      | छोटी आँत, बड़ी आँत, | भोजन का पाचन अवशोषण एवं              |
|                     |           |                     | उपस्थित स्वाद ग्रन्थियों | मलाशय, ग्रन्थियां   | स्वांगीकरण आहार नाल द्वारा किया      |
|                     |           |                     | द्वारा स्वाद का पता      | पैनिक्रियाज, यकृत,  | जाता है। ग्रंथियों द्वारा पाचक रस से |
|                     |           |                     | चलना                     |                     | सरल पोषक तत्वों में परिवर्तन होता है |
|                     |           | जड़ें, एवं पत्तियाँ | जड़ें मिट्टी से खनिज     |                     | पत्तियाँ प्रकाश संश्लेषण द्वारा भोजन |
|                     |           |                     | लवण अवशोषित              |                     | निर्माण का कार्य करती है।            |
|                     |           | l l                 | जाइलम ।                  |                     |                                      |

| 2. | परिसंचरण | तना                    | जल एवं खनिज पदार्थी          | हृदय, रक्त, रक्त            | रुधिर वाहिनियाँ हृदय से रुधिर पूर्ण                 |
|----|----------|------------------------|------------------------------|-----------------------------|-----------------------------------------------------|
|    | तंत्र    |                        | के संवहन और भोजन             | वाहिनियाँ<br>वाहिनियाँ      | शरीर में ले जाती है और इसी में                      |
|    |          |                        | स्थानान्तरण का कार्य         |                             | वापस लाती है रुधिर का पूरे शरीर में                 |
|    |          |                        | करता है।                     |                             | पहुंचा व वहां से वापस आना पूरा                      |
|    |          |                        |                              |                             | कार्य पम्प की भांति करता है। क्योंकि                |
|    |          |                        |                              |                             | जन्तु शरीर में आहार नाल में भोजन                    |
|    |          |                        |                              |                             | को पचाने एवं श्वास नांगों में वातावरण               |
|    |          |                        |                              |                             | की वायु से $\mathbf{O}_2$ गृहण करने मात्र से        |
|    |          |                        |                              |                             | कोई लाभ नहीं जब तक कि पचे हुए                       |
|    |          |                        |                              |                             | पोषक पदार्थों एवं $\mathbf{O}_{_{\!2}}$ को उन अंगों |
|    |          |                        |                              |                             | से शरीर की सभी कोशिकाओं में                         |
|    |          |                        |                              | _6                          | पहुँचाने की व्यवस्था नहीं अतः जन्तु                 |
|    |          |                        |                              |                             | शरीर में एक विस्तृत पाइप लाइन का                    |
|    |          |                        |                              |                             | तन्त्र होता है। इसे परिसंचरण तन्त्र                 |
|    |          |                        |                              |                             | कहते हैं। रुधिर का बहना, हृदय का                    |
|    |          |                        |                              |                             | कम्पन सभी अनैच्छिक पेशियों द्वारा                   |
|    |          |                        |                              |                             | किया जाता है। लाल रक्त कणिकाओं                      |
|    |          |                        |                              |                             | में हीमोग्लोबिन होती है आक्सीजन से                  |
|    |          |                        |                              |                             | मिलकर ऊर्जा देता है।                                |
| 3. | श्वसन    | अकशेरुकी प्राणी बाहरी  | बताये गये बाह्य अंग          | अकशेरुकी प्राणियों के श्वसन | हम लोग एक निश्चित दर से बाहरी                       |
|    | तंत्र    | सतह, स्पाइरिकल्स,      | वायु के सम्पर्क में          | से सम्बन्धित अंगों में नासा | हवा को नासा छिद्र द्वारा श्वास नली                  |
|    |          | बुक लंग द्वारा कशेरुकी | आते ही आक्सीजन               | मार्ग, ग्रसनी, कण्ड द्वारा  | से होती हुई फेफड़ों में बार-बार भरते                |
|    |          | प्राणी त्वचा द्वारा,   | युक्त वायु अपने शरीर         | स्वर यन्त्र तथा श्वासनाल    | और निकालते हैं। इसी श्वासोच्छवास                    |
|    |          | गिल्स द्वारा नासा      |                              | फेफड़ा                      | या फेफड़ों का वायुसंचालन कहते हैं।                  |
|    |          | (नाक) छिद्र द्वारा     | पानी में रहने वाले           |                             |                                                     |
|    | N        |                        | जीव पानी में घुली            |                             |                                                     |
|    |          |                        | $\mathbf{O}_2$ को ग्रहण करते |                             |                                                     |
|    |          |                        | हैं।                         |                             |                                                     |
|    |          | पौधों में श्वसन के लिए |                              |                             | पोषक तत्वों का आक्सीकरण एवं ऊर्जा                   |
|    |          | कोई बाह्य अंग नहीं     | सतह में उपस्थित रन्थ्रों     | का पहुंचना                  | को प्राप्ति होना।                                   |
|    |          | होते हैं किन्तु श्वसन  | (छिद्र) द्वारा गैसीय         |                             |                                                     |
|    |          | क्रिया होती है।        | आदान प्रदान एवं              |                             |                                                     |
|    |          |                        | वाष्पोत्सर्जन का भी          |                             |                                                     |
|    |          |                        | कार्य करती है।               |                             |                                                     |

|                     |                                    | 1                         |                                  |           |                      |                     |
|---------------------|------------------------------------|---------------------------|----------------------------------|-----------|----------------------|---------------------|
| 4. उत्सर्जन         | जन्तुओं में त्वचा, गुर्दा          | मनुष्यों में पसीना        | स्वेद ग्रन्थियाँ, गुर्दा, बे     | ोमेन      | पसीना का बनना,       | गोंद का निकलना।     |
| तंत्र               | वनस्पतियों में तनों पर,            | निकलना, मूत्र का बनन      | ,कैप्सूल, मृत्र नली              |           |                      |                     |
|                     | पत्तियों पर छोटे-छोटे              | वनस्पतियों में वाष्पोत्स- | लेन्टीसेल आदि                    |           |                      |                     |
|                     | छिद्र जैसी रचना                    | र्जन, गोंद का             |                                  |           |                      |                     |
|                     |                                    | निकालना आदि               |                                  |           |                      |                     |
| 5. वृद्धि           | वनस्पतियों में कक्षों में          | कक्षस्थ कलिका के          | मेरिस्टेमेटिक ऊतकों के           | द्वारा    |                      |                     |
|                     | कक्षस्थ कलिका,                     | बढ़ने से शाखा, अग्राथ     | गौथा पौधा लम्बाई चौड़            | ड़ाई में  |                      |                     |
|                     | अग्रभाग में अग्रस्थ                | कलिका के बढ़ने से         | बढ़ता है।                        |           |                      | 4                   |
|                     | कलिका एवं पर्व।                    | पौधा लम्बाई में व         |                                  |           |                      |                     |
|                     | जन्तुओं में वृद्धि 'हार्मोन        | पर्वके बढ़ने पर           |                                  |           |                      |                     |
|                     | के कारण होता हैं।                  | लम्बाई में                |                                  |           |                      |                     |
| 6. तन्त्रिका तन्त्र | वनस्पतियों में समस्त               | उद्दीपन को पहचान कर       | मस्तिष्क, रीढ़ रज्जूव            | तन्त्रिका | तन्त्रिका तन्त्र की  | पूर्ण कार्य प्रणाली |
|                     | प्रक्रिया जैसे कली से              | तन्त्रिकाओं द्वारा        |                                  |           | पूर्व में दिया जा    | चुका है।            |
|                     | फूल बनना, पर्ण वृत्त               | मस्तिष्क तक पहुंचाना      |                                  |           |                      |                     |
|                     | का बढ़ना, पॉलेन टयूब               |                           |                                  |           |                      |                     |
|                     | का बनना सभी                        |                           |                                  |           |                      |                     |
|                     | रासायनिक समन्वयन के                | ~?                        |                                  |           |                      |                     |
|                     | द्वारा होता है जिसे पूर्व          |                           |                                  |           |                      |                     |
|                     | में दिया गया है।                   |                           |                                  |           |                      |                     |
|                     | जन्तुओं में विकसित                 |                           |                                  |           |                      |                     |
|                     | होता है। बाह्य अंग,                |                           |                                  |           |                      |                     |
|                     | मात्र संवेदी अंग है।               |                           |                                  |           |                      |                     |
|                     | जैसे आँख, नाक, कान                 |                           |                                  |           |                      |                     |
|                     | जीभ आदि।                           |                           |                                  |           |                      |                     |
| 7. जनन तन्त्र       | वनस्पतियों में पुष्प मुख्य         | परागण के पश्चात नर        | नुकेसर, स्त्रीकेसर पराग <b>्</b> | कण,       | जनन प्रक्रिया के     | उपरान्त फल एवं      |
|                     | जनन भाग है व निम्न                 | _                         | <b>ਭੰ</b> ड                      | ŀ         | बीज का निर्माण       | होना।               |
|                     | वनस्पतियों में पूर्ण पौधा          | _                         |                                  |           |                      |                     |
|                     | ही जनन करता है जैसे                |                           |                                  |           |                      |                     |
|                     | अलैंगिक या कायिक                   | T **                      |                                  |           |                      |                     |
|                     | जनन जन्तुओं में नर                 | चुकाह।<br>                |                                  |           |                      |                     |
|                     | व मादा जनन अंग<br>स्पष्ट होते हैं। |                           |                                  |           |                      |                     |
|                     | (नह शत हा                          |                           |                                  |           |                      |                     |
|                     |                                    |                           | वृष्ण, गर्भाशय आदि               | ļ         | प्रक्रिया के उपरान्त | अन्ड या बच्चे का    |
|                     |                                    |                           |                                  |           | जन्म                 |                     |
|                     | ļ                                  |                           |                                  |           |                      |                     |

#### इसे भी जानें

पक्षियों में मूत्र नहीं बनता है जिससे जल की हानि नहीं होती है इसीलिए इन्हें यूरिकोटीलिक कहते हैं। किन्तु जलीय जन्तु अमीनोटीलिक होते हैं क्योंकि अमोनिया के उत्सर्जन में जल की काफी मात्रा की आवश्यकता होती है जो इन्हें उपलब्ध होता है।

## मूल्यांकन के प्रश्न

### वस्तुनिष्ठ प्रश्न

- 1. पत्ती में पाये जाने वाले रन्ध्र कहां स्थित होते हैं?
  - (1) ऊपरी सतह पर

(2) निचली सतह पर

(3) डंठल पर

- (4) पर्णाधार पर
- 2. पुष्प का नर भाग निम्न में से कौन सा है?
  - (1) स्त्रीकेसर

(2) पुंकेसर

(3) दलपुंज

- (4) बाह्य दल
- मनुष्य में वृक्कों की संरचनात्मक एवं क्रियात्मक इकाइयाँ होते हैं-
  - (1) मूत्र नलिकाएं

(2) शुक्रजनन नलिकाएं

(3) नेफ्रीडिया

(4) वृक्क नलिकाएं

## अति लघु उत्तरीय प्रश्न

- (1) वनस्पतियों में पाये जाने वाले बाह्य वृद्धि अंग बताइये।
- (2) मनुष्य में श्रवण हेतु पाये जाने वाले आन्तरिक अंग बताइये
- (3) वनस्पतियों में संवेदना किसके द्वारा प्राप्त होती है।

## लघु उत्तरीय प्रश्न

- (1) जन्तुओं में पोषण कैसे होता है?
- (2) वनस्पतियों में पोषण हेतु कौन सी क्रिया अपनाई जाती है।
- (3) वनस्पतियों में बाह्य जनन अंग कौन-कौन से हैं?

#### दीर्घ उत्तरीय प्रप्रन

वनस्पतियों एवं जन्तुओं के बाह्य एवं आन्तरिक श्वसन अंगों का उल्लेख करते हुए कार्य लिखिये?

## इकाई - 4 सूक्ष्म जीवों की दुनिया-संरचना तथा उपयोगिता सूक्ष्म जीव-दोस्त या दुश्मन। भोज्य पदार्थों का परिरक्षण

इस इकाई को पढ़ने के उपरान्त आपको निम्नितिखित बिन्दुओं की जानकारी होगी—

- सृक्ष्म जीव एक परिचय एवं इतिहास
- सूक्ष्म जीव की संरचना तथा उपयोगिता

वाइरस

जीवाणु

प्रोटोजोआ — (अमीबा)

शैवाल

कवक

- सृक्ष्म जीव दोस्त या दुश्मन
- भोज्य पदार्थों का परिरक्षण

#### सूक्ष्म-जीव-एक परिचय एवं इतिहास

#### क्रियाविधि-

## कक्षा में प्रशिक्षक शिक्षार्थियों से प्रश्न करें-

- गर्मियों में भोजन क्यों जल्दी नष्ट होने लगता है?
- यदि खुला रखा भोजन खाये तो हमारी सेहत पर क्या प्रभाव पड़ता है?
- ताजा दूध अधिक समय तक रखने पर खराब हो जाता है क्यों?
- हमें मौसम बदलने पर बुखार क्यों आता है?
- खमीर द्वारा बने हुए किसी व्यंजन का नाम बताइये। दही कैसे बनती है? प्रशिक्षक शिक्षार्थियों के विभिन्न उत्तरों
   को सुनते हुए व्याख्या करें—

हमारे वातावरण में सूक्ष्म जीव उपस्थित होते हैं जिनके कारण हम बीमार होते हैं, हमें खाने के विविध व्यंजन मिलते हैं इसके अतिरिक्त इससे फसलें भी खराब होती हैं, पौधों में विभिन्न रोग हो जाते हैं अतः आइये इनके बारे में जानें—

आज से लगभग 5-6 खरब वर्ष पूर्व पृथ्वी का विकास हुआ। वैज्ञानिकों के अनुसार लगभग 3.5 खरब वर्ष पूर्व पृथ्वी पर प्रथम कोशिका या सरलतम जीव की उत्पत्ति हुई। जैव विकास के सिद्धांत के अनुसार इन सरलतम आद्य जीवों से विविध प्रकार के तथा विभिन्न संरचनात्मक जटिलता वाले जीवों का क्रमिक विकास हुआ। अतः जीवों के सम्बन्ध में

## दो मुख्य अवधारणायें हैं :

- 1. जीव जीवों से ही उत्पन्न होते हैं (Life comes from life)
- 2. जीवों की संरचना में क्रमिक जटिलता का विकास होता है (Descent with modification) आधुनिक जीव भी संरचनात्मक जटिलता के विभिन्न स्तर प्रदर्शित करते हैं, जैसे :
- 1. उपकोशिकीय स्तर (Subcellular level)
- 2. प्रोकेरियोटिक स्तर (Prokaryotic level)
- 3. यूकेरियोटिक स्तर (Eukaryotic level)
- 1. उपकोशिकीय स्तर (Subcellular Level) : इस स्तर के जीव अपूर्ण होते हैं। ये केवल जैविक तंत्र के अन्दर अर्थात् जीवित कोशिकाओं के अन्दर गुणन करके संख्या में वृद्धि करते हैं। वाइरस, वाइरॉयड्स तथा प्रिओन इस स्तर के उदाहरण हैं।
- 2. प्रोकेरियोटिक स्तर (Prokaryotic Level) : बैक्टीरिया, नील-हरित शैवाल तथा साइनोबैक्टीरिया इस स्तर के जीव हैं। इनकी कोशिकाओं में कोशिका कला, जीवद्रव्य तथा आनुवांशिक पदार्थ (DNA) होता है किन्तु केन्द्रक व कोशिकांग नहीं होते।
- 3. यूकेरियोटिक स्तर (Eukaryotic Level) : अधिकांश एककोशिक तथा सभी बहुकोशिक जीव यूकेरियोटिक कोशिकाओं के बने होते हैं। इनमें स्पष्ट केन्द्रक तथा सभी कोशिकांग होते हैं तथा कोशिकांग अलग-अलग प्रकार का कार्य करने के लिए विशेषीकृत होते हैं।

## सूक्ष्मजैविकी का संक्षिप्त इतिहास (BRIEF HISTORY OF MICROBIOLOGY)

सन् 1676-1677 में हॉलैण्ड निवासी एन्टॉनी वॉन ल्यूवेनहॉक (Antoni Van Leeuwenhoek) ने स्वयं सूक्ष्मदर्शी बनाकर पृथ्वी पर 'सूक्ष्मजीवों के छिपे संसार' (microbes or microorganisms) की खोज की। उन्होंने तालाब के जल में पाये जाने वाले जीवाणुओं, प्रोटोजोआ व हाइड्रा, आदि सूक्ष्मजीवों का वर्णन किया और उन्हें सूक्ष्मजन्तुक (animalcules) का नाम दिया। इसी कारण ल्यूवेनहॉक को 'सूक्ष्मजैविकी का पिता' (Father of Microbiology) कहते हैं। 19वीं सदी में लुई पाश्चर (Louis Pasteur) की खोजों से 'सूक्ष्मजैविकी' (Microbiology) की स्थापना हुई। 18वीं तथा 19वीं शताब्दी तक जीवाणुओं को सबसे सूक्ष्म एककोशिकीय जीव माना जाता था। जीवाणुओं का विभिन्न रोगों से सम्बन्ध 20वीं शताब्दी में ही स्थापित हो गया।

#### क्रियाविधि-

प्रशिक्षक शिक्षार्थियों से प्रश्न करें—

कुछ ऐसे रोगों के नाम बताइये जो वाइरस से होता है?

- गंगा जल रखा रहने के बाद भी खराब नहीं होता है?
- जीवाणुओं से भी छोटे जीव का नाम बताइये?

#### वाइरस

वाइरस, वाइरॉयड्स तथा प्रिओन्स उपकोशिकीय कारक (subcellular agents) हैं जो कोशिका में प्रवेश करके, उसके सामान्य कार्यों को रोक देते हैं और परपोषी कोशिका को नष्ट करते हैं।

#### वाइरस (VIRUSES)

वाइरस प्रोटीन एवम् न्यूक्लीक अम्ल के बने उपकोशिकीय संरचना वाले परजीवी (subcellular parasites) हैं। वे बैक्टीरिया से भी छोटे हैं। इलेक्ट्रॉन सूक्ष्मदर्शी के आविष्कार के पश्चात् ही इनका पता चला था। ये केवल जीवित कोशिकाओं के अन्दर गुणन कर सकते हैं। जीवित तंत्र के बाहर इन्हें क्रिस्टलीय रूप में संचित किया जा सकता है। इनके अध्ययन के लिये विषाणु विज्ञान (virology) की स्थापना की गई।

#### वाइरस का इतिहास (History of Virus)

वाइरस (L. Virus = poison) का अर्थ है 'विष के अणु'। ये जन्तु व पादपों में विभिन्न प्रकार के रोग उत्पन्न करते हैं। वाइरस की खोज रूसी वैज्ञानिक आइवानोवस्की (Iwanovsky) ने सन् 1892 में तम्बाकू की पत्तियों में चितेरी रोग (tobacco mosaic disease) के अध्ययन के समय की थी। रोगप्रस्त पौधों के रस को स्वस्थ पौधों की पत्तियों पर रगड़ने से स्वस्थ पौधों में भी यह रोग हो जाता है। बीजेरिन्क (Beijerinck) ने सन् 1898 में आइवानोवस्की की खोज की पृष्टि की। इसके बाद स्टैनले (Stanley: 1935) ने TMV वाइरस को क्रिस्टलीय अवस्था में अलग किया। इसके लिए उन्हें 1946 में नोबेल पुरस्कार मिला। डारलिंग्टन ने सन् 1944 में खोज की कि वाइरस न्यूक्लीओप्रोटीन के बने होते हैं।

19वीं तथा 20वीं शताब्दी में निम्नलिखित वाइरसजनित रोगों का पता लगाया गया :

- 1. **ल्योफ्लर तथा फ्रॉश** (Loeffler and Frosch: 1897) ने जर्मनी के पशुओं में **'खुरपका मुखपका'** (Foot and mouth) रोग का पता लगाया।
- 2. वाल्टर रीड (Walter Reed : 1902) ने क्यूबा में मनुष्य के 'पीत ज्वर वाइरस' (yellow fever virus) की खोज की।
- 3. लैंडस्टीनर तथा पोपर (Landsteiner and Popper: 1909) ने पोलियो वाइरस (polio virus) की खोज
  - 4. पेयटन राउस (Peyton Rous: 1909) ने मुर्गी में कैंसर रोग का पता लगाया।
- 5. द्वॉर्ट (Twort : 1915) तथा डी' हेरेल (d' Herelle) ने बैक्टीरियोफेज (bacteriophages) की खोज की। इन्हें फेज (phage) भी कहते हैं।

#### वाइरसों का आमाप (Size of Viruses)

वाइरस के कणों का माप 15 m $\mu$  से 210 m $\mu$  (millimicron) तक़ होता है। चेचक का वाइरस (pox virus) सबसे बड़ा होता है। इसका माप 350 nm या 0.35  $\mu$  होता है। सबसे छोटा वाइरस कण 20 nm व्यास के होते हैं। सबसे छोटे वाइरस foot and mouth disease से सम्बन्धित हैं।

### वाइरसों की आकृति (Shape of Viruses)

पादप वाइरस छड़नुमा होते हैं किन्तु कुछ बिस्कुट के आकार के होते हैं। खसरा व इन्फ्लुएंजा के वाइरस गोल होते हैं। बैक्टीरियोफेज या जीवाणुभोजी टैडपोलनुमा होते हैं। गलसुआ (mumps) तथा पोलियो के वाइरस बहुफलीज (polyhedral) होते हैं। चेचक के वाइरस ईंटनुमा तथा रेबीज वाइरस बन्दूक की गोली के आकार के होते हैं।

## वाइरसों की संरचना एवम् संगठन (Structure and Organisation of Viruses)

वाइरस के एक कण को विरिओन (virion) कहते हैं। प्रत्येक विरिओन दो भागों का बना होता है।

- 1. कैप्सिड (Capsid) : कैप्सिड प्रोटीन का बना खोल होता है। यह बहुत से प्रोटीन एककों का बना होता है जिन्हें कैप्सोमीयर्स (capsomeres) कहते हैं।
- 2. न्यूक्लीक अम्ल (Nucleic Acid) : कैप्सिड के अन्दर न्यूक्लीक अम्ल होता है। अधिकांश जन्तु वाइरसों तथा बैक्टीरियोफेज में DNA तथा अधिकांश पादप वाइरसों व कुछ जन्तु वाइरसों में RNA आनुवांशिक पदार्थ होता है।

वाइरसों में आनुवांशिक पदार्थ के निम्न रूप में हो सकता है

(a) RNA का इकहरा सूत्र (ssRNA) : इन्फ्लुएंजा, गलसुआ, मस्तिष्क शोध (encephalitis), पीत ज्वर (yellow fever), पोलियो वाइरस में तथा अधिकांश पादप वाइरस में RNA का इकहरा सूत्र होता है।



- (b) RNA का दोहरा सूत्र (dsRNA) : जुकाम, टिक फीवर, कुछ बैक्टीरियोफेज तथा कुछ पादप वाइरसों में RNA का दोहरा सूत्र पाया जाता है।
  - (c) DNA का इकहरा सूत्र (ssDNA) : बैक्टीरियोफेज में DNA का इकहरा सूत्र आनुवांशिक पदार्थ होता है।

- (d) DNA का दोहरा सूत्र (dsDNA) : अधिकांश पादप वाइरसों में तथा मनुष्य में चेचक, खसरा, एवं हरपीज, आदि रोगों के वाइरसों में दोहरे सूत्र वाला DNA पाया जाता है।
- 3. वाइरसों का आवरण (Viral Envelope) : कुछ जन्तु वाइरसों में कैप्सिड के बाहर एक आवरण होता है। यह आवरण सजीव कोशिकाओं की प्लाज्मा मेम्ब्रेन (जीवद्रव्य कला) के समान द्विस्तरीय फॉस्फोलिपिड (phospholipid bilayer) का बना होता है जिसमें अनेक प्रोटीन अणु निलम्बित रहते हैं। ऐसे आवरण को लिपोप्रोटीन आवरण (lipoprotein envelope) कहते हैं। इसकी बाहरी सतह पर ग्लाइकोप्रोटीन्स (glycoproteins) के स्पाइक (spikes) होते हैं जिन्हें पेप्लोमर (peplomers) कहते हैं। इन स्पाइकों में कशेरुकियों के लाल रुधिराणुओं को परस्पर चिपकाने वाले (agglutinating) प्रोटीन्स होते हैं। ये दो प्रकार के होते हैं : ऐग्लूटिनिन्स (agglutinins) तथा न्यूरामिनिडेज (neuraminides)। ये प्रोटीन्स वाइरस संक्रमण के लिये आवश्यक हैं। आवरणयुक्त जन्तु वाइरसों से इस आवरण को हटाने पर उनकी संक्रमण क्षमता नहीं रहती। कुछ जन्तु वाइरसों में आवरण नहीं होता। इन्हें नग्न वाइरस कहते हैं। विंशफलकीय वाइरस (icosahedral viruses) नग्न होते हैं। सभी कुंडलाकार जन्तु वाइरसों पर लिपोप्रोटीन का आवरण पाया जाता है।
- 4. वाइरसों के एंजाइम्स (Viral Enzymes) : कुछ वाइरसों के आवरण में पाए जाने वाले एंजाइम्स के अतिरिक्त कुछ सहायक एंजाइम्स (auxiliary enzymes) भी होते हैं जो न्यूक्लीक अम्ल से सम्बद्ध रहते हैं। परपोषी कोशिका में प्रवेश करने के बाद वाइरस कणों के एंजाइम्स वाइरल गुणसूत्र के द्विगुणन एवं अनुलिपिकरण (replication and transcription) को उत्प्रेरित करते हैं।

## बैक्टीरियोफेज की संरचना

## (Structure of Bacteriophage)

जीवाणुओं के परजीवी वाइरस कणों को बैक्टीरियोफेज (bacteriophage) कहते हैं। फेज शब्द ग्रीक भाषा के फेगास (phagos) शब्द से लिया गया है जिसका अर्थ है दूसरों का भक्षण करना। ये भेकिशिशु (tadpole) के आकार के होते हैं। इसमें दो प्रमुख भाग होते हैं:

- 1. **बहुफलकीय शीर्ष भाग** (polyhedral head part), जिसके अन्दर न्यूक्लीक अम्ल का अणु होता है।
- 2. स्प्रिंग के समान पूंछ भाग (spring-like tail part)।
- 3. सिर तथा पूंछ भाग के बीच संकरी पट्टी के रूप का कॉलर भाग (collar part)।
- 4. पूंछ के अंतिम सिरे पर एक चपटी छोर प्लेट (base-plate or endplate) तथा इससे जुड़े 6-लम्बे पुच्छ सूत्र

(tail filaments) एवम् 6 छोटे कीलनुमा प्रवर्ध (peg-like diverticulae)।



इन्फ्लुएन्जा, हर्पीज एवं पोलियो बीमारियां भी वाइरस द्वारा होती हैं जिनके चित्र ऊपर प्रदर्शित किये गये हैं। क्रिया विधि—

- प्रशिक्षक शिक्षार्थियों से एक सारिणी तैयार करवायें जिसमें ऐसे वाइरसों के नाम हों जो जन्तुओं में, पादपों में एवं जीवाणुओं में पाये जाते हों।
- ऐसी बीमारियों के नाम पूंछें जो जन्तुओं में, पादपों में होती है।

प्रस्तुतीकरण—विभिन्न प्रकार की बीमारियों को देखते हुए हम वाइरसों को उनकी जीनी रचना (जीनोम) के आधार पर एवं किस जीव में अर्थात् जन्तु में, पादपों में या जीवाणुओं में प्रवेश करते हैं वर्गीकृत किया जाता है।



44

### 1. जन्तु वाइरस (Animal Viruses)

अब तक लगभग 600 जन्तु वाइरसों का पता लग चुका है। मनुष्य में रोग उत्पन्न करने वाले कुछ वाइरसों का विवरण निम्नलिखित हैं—

#### RNA वाइरस (Riboviruses) (जीनी रचना)

इस प्रकार के वाइरस में मात्र RNA पाया जाता है और इनके द्वारा फैलाने वाली बीमारियाँ निम्नलिखित हैं—

- Polio (पोलियो)
- Encephalitis (जापानी बुखार)
- Mumps (गल सुआ)
- Influenza (इन्फ्लुएन्जा)
- Common cold (साधारण बुखार)
- Sar coma (कैन्सर)

#### इन्हें भी जानें-

## मानव शरीर में रोग उत्पन्न करने वाले कुछ वाइरस

|                                          | Family         | Capsid Symmetr    | y         | Virion          | Nucleic   | Enveloped    | Typical       | Disease   |
|------------------------------------------|----------------|-------------------|-----------|-----------------|-----------|--------------|---------------|-----------|
|                                          |                | Assembly Size     |           | Diameter        | Acid      | /Naked       | Agent         |           |
|                                          |                |                   |           | (nm)            |           |              |               |           |
| <b>A.</b>                                | Deoxyribovirus | es (Viruses havin | g DNA Gen | ome)            |           |              |               |           |
| 1.                                       | Poxvirus       | Helical cytoplasi | m         | $160\times 200$ | dsDNA     | Enveloped    | Veriola       | Small pox |
| 2.                                       | Herpes virus   | Icosahedral       | 100       | dsDNA           | Enveloped | Herpes       | Fever, bliste | rs        |
|                                          | simplex        |                   |           |                 |           |              |               |           |
| 3.                                       | Adenovirus     | Icosahedral       | 80        | dsDNA           | Naked     | Human        | Upper respir  | ratory    |
|                                          | adenovirus     | tract disease     |           |                 |           |              |               |           |
| B. Riboviruses (Viruses with RNA Genome) |                |                   |           |                 |           |              |               |           |
| 4.                                       | Reovirus       | Icosahedral       | 75-80     | dsRNA           | Naked     | Reovirus of  | Respiratory   | and GI    |
|                                          | humans         | tract illness     |           |                 |           |              |               |           |
| 5.                                       | Picomavirus    | Icosahedral       | 18-30     | dsRNA           | Naked     | Polio virus  | Poliomyeliti  | s         |
| 6.                                       | Togavirus      | Icosahedral       | 50        | ssRNA           | Enveloped | Alpha virus  | Encephalitis  | ;         |
| 7.                                       | Paramyxovirus  | Helical;          | 150       | ssRNA           | Enveloped | Mumps virus  | Mumps         |           |
|                                          | cytoplasm      |                   |           |                 |           |              |               |           |
| 8.                                       | Orthomyxovirus | s Helical;        | 18-120    | ssRNA           | Enveloped | Influenza A, | Influenza     |           |
|                                          | cytoplasm      | B, C viruses      |           |                 |           |              |               |           |
| 9.                                       | Coronovirus    | Helical;          | 80-120    | ssRNA           | Enveloped | Human        | Common co     | ld        |
|                                          | strains        |                   |           |                 |           |              |               |           |
| 10.                                      | Retrovirus     | Helical           | 100-130   | ssRNA 45        | Enveloped | RVS          | Sarcoma (Ca   | ancer)    |

### DNA वाइरस (Deoxyriboviruses) (जीनी रचना)

इस प्रकार के वाइरस जिसमें मात्र DNA पाया जाता है और इनके द्वारा फैलने वाली बीमारियाँ निम्नलिखित हैं—

- Small Pox (बड़ी माता)
- Herpes (हर्पीज)
- Upper Respiratory tract disease (...)

#### 2. पादपों के वाइरस (Plant Viruses)

अब तक वैज्ञानिक 180 से भी अधिक प्रकार के वाइरसों का पता लगा चुके हैं। अधिकांश पादप वाइरस कुंडलाकार होते हैं और इनका जीनोम (जीनी रचना) एकसूत्री RNA (single stranded RNA = ssRNA) होता है। कुछ पादप वाइरसों में द्विसूत्री RNA (dsRNA) या द्विसूत्री DNA (dsDNA) होता है किन्तु एकसूत्री DNA (ssDNA) नहीं होता। अधिकांश वाइरसों के वाहक आर्थ्रोपोड जन्तु होते हैं। इनके संक्रमण से पौधों में वृद्धि कम हो जाती है तथा पत्तियाँ चितकबरी, झुर्रीदार व बौनी रह जाती है। जैसे टोबैको मोजाइक वाइरस

#### 3. जीवाणुओं के वाइरस (Viruses of Bacteria)

जीवाणुओं के वाइरसों को फेज (phage) या बैक्टीरियोफेज कहते हैं। इनका विस्ञिन (virion) टैडपोल या कशेरुकियों के शुक्राणुओं की भाँति शीर्ष तथा पुच्छ में बँटा होता है। इनका जीनोम शीर्ष भाग में स्थित होता है। यह dsDNA, ssDNA, dsRNA या ssRNA होता है। पुच्छ इन्जेक्शन की सुई का काम करती है जो जीवाणु की कोशिकाभित्ति को भेद देती है। वाइरस का विस्ञिन जीवाणु कोशिका में चला जाता है।

फेज वाइरस दो प्रकार के होते हैं : उग्र (Virulent) तथा संयत (temperate)। जब जीवाणु में फेज जीनोम उग्र होता है तो इन फेज को लाइटिक (lytic) फेज कहते हैं। लाइटिक फेज में फेज वाइरस की अनेक प्रतिलिपियाँ बन जाती हैं। कुछ ही समय में जीवाणु फट जाता है तथा संतित वाइरस कण मुक्त हो जाते हैं। जिन जीवाणुओं में फेज जीनोम संयत होता है उन्हें लाइसोजेनिक (lysogenic) कहते हैं। जीवाणु कोशिकाओं में पहुँचकर इन फेज का जीनोम बैक्टीरिया के DNA अणु में ही समाकलित हो जाता है। अब इन्हें प्रोवाइरस या प्रोफेज कहते हैं। अनुकूल दशाओं में जीवाणु कोशिकाओं में कुछ नये प्रोटीन्स का संश्लेषण होता है जिसके कारण जीवाणु कोशिका के कुछ लक्षण बदल जाते हैं। प्रतिकूल दशाओं में प्रोफेज जीवाणु के DNA से पृथक होकर उग्र हो जाता है और जीवाणु कोशिका का संलयन कर देता है।

आइये जाने वाइरस में जनन कैसे होता है।

## वाइरसों में जनन (REPRODUCTION IN VIRUSES)

वाइरस अविकल्पी परजीवी (obligatory parasites) हैं। सजीव कोशिकाओं के बाहर ये निर्जीव न्यूक्लीओप्रोटीन

कण होते हैं। वास्तव में वाइरसों में आनुवंशिक पदार्थ तो होता है किन्तु उसका उपयोग करने के लिये इनमें अपनी उपापचयी यांत्रिकी (metabolic machinery) नहीं होती। परपोषी कोशिका में प्रवेश करने के बाद वाइरस परपोषी के जीनोम का विनाश कर देते हैं और परपोषी की उपापचयी यांत्रिकी का उपयोग करके अपने जीनोम तथा कैप्सिड प्रोटीन अणुओं का संश्लेषण करके संतित वाइरल कणों का निर्माण करते हैं। इस प्रकार वाइरल कणों में तेजी से वृद्धि होती है। वाइरस के इस जीवन चक्र को लाइटिक चक्र (lytic cycle) कहते हैं।

#### लाइटिक चक्र (Lytic Cycle)

वाइरस के लाइटिक चक्र को परजीविता चक्र या पोषद-कोशिकीय चक्र (parasitic cycle or host-cell cycle) कहते हैं। इसमें निम्नलिखित चरण होते हैं :

- 1. अधिशोषण (Adsorption) : वाइरस कण (विरिओन) के परपोषी कोशिका से चिपकने को अधिशोषण कहते हैं। इसमें बैक्टीरियोफेज के पुच्छ-प्रोटीन्स जीवाणु के खोल के ग्लाइकोप्रोटीन्स या लिपोप्रोटीन्स के बीच अभिक्रिया करते हैं। सम्पर्क स्थल पर जीवाणु कोशिका के खोल में एक छिद्र बन जाता है।
- 2. बेधन (Penetration) : स्प्रिंग-सदृश पूंछ के सिकुड़ने से वाइरस का DNA परपोषी या जीवाणु कोशिका के अन्दर पहुंच जाता है और प्रोटीन खोल बाहर रह जाता है। परन्तु पादप एवम् जन्तु वाइरस अपने प्रोटीन खोल के साथ परपोषी कोशिकाओं में प्रवेश करते हैं।

पादपों में (In Plants) : अधिकांश, पादप वाइरसपत्तियों की क्षतिग्रस्त सतह से प्रवेश करते हैं अथवा आर्थ्रोपोड वेक्टर द्वारा संरोपिण (inoculate) होते हैं।

जंतुओं में (In Animals): जंतु वाइरस भी परपोषी कोशिकाओं में अपने खोल के साथ ही प्रवेश करते हैं। इनके प्रवेश की तीन विधियाँ हैं:

- 1. **सीधा बेधन** (Direct penetration) : नग्न वाइरसों (पोलियो का वाइरस) के विरिओन परपोषी कोशिका की कोशिका कला में से सीधे अन्दर प्रवेश करते हैं।
- 2. समेकन (Fusion) : कुछ आवरण-युक्त वाइरस (जैसे न्यूमोनिया, छोटी माता व गलसुआ के वाइरस) के विरिओन का आवरण परपोषी कोशिका की कोशिकाकला से समेकित हो जाता है और विरिओन का न्यूक्लिओकैप्सिड भाग कोशिकाद्रव्य में पहुँच जाता है।
- 3. अन्तः कोशिकापारण या वाइरोपेक्सिस (Endocytosis or Viropexis) : परपोषी कोशिकायें कुछ वाइरस के कणों का सिक्रय कोशिका भक्षण (phagocytosis) करती हैं। अतः प्रत्येक विरिओन कोशिकाद्रव्य में फैगोसोम (phagosome) के अन्दर बंद हो जाता है। फैगोसोम में उपस्थित लाइसोसोमल एंजाइम विरिओन के आवरण व प्रोटीन कवच को नष्ट कर देते हैं और विरिओन का जीनोम कोशिकाद्रव्य में मुक्त हो जाता है।
  - 4. अनावरण (Uncoating) : परपोषी कोशिका के अन्दर विरिओन का न्यूक्लीक अम्ल और इससे सम्बन्धित

एंजाइम्स के अलावा सभी संरचनायें (प्रोटीन खोल तथा वाइरल आवरण) परपोषी कोशिका के लाइटिक एंजाइम्स द्वारा नष्ट हो जाती हैं।

- 5. संश्लेषण प्रावस्था (Synthetic Phase) : परपोषी कोशिका के अन्दर वाइरल न्यूक्लीक अम्ल अणु का बारम्बार द्विगुणन होता है। साथ ही खोल प्रोटीन्स व एजाइम्स के संश्लेषण को भी प्रेरित करता है। ये एंजाइम परपोषी कोशिका के जीनोम तथा परपोषी कोशिका को नष्ट करके और नये बने विरिओन्स को मुक्त करने में सहायता करता है।
- 6. परिपक्वन (Maturation) वाइरल DNA और प्रोटीन खोल के संगठित होने पर नये विरिओन कण बनते हैं। संयोजन के बाद विरिओन्स के चारों ओर आवरण बनता है।
- 7. विमुक्ति (Release) : परपोषी कोशिका के फटने पर विरिओन्स मुक्त हो जाते हैं। कुछ जन्तु वाइरस बिहःकोशिकापारण (exocytosis) द्वारा विमुक्त होते हैं। ये नयी परपोषी कोशिकाओं को संक्रमित करते हैं। बैक्टीरियोफेज का लाइटिक चक्र केवल 15 है 30 मिनट में पूरा हो जाता है किन्तु जन्तु वाइरसों में इस चक्र में 15 से 30 घंटे लगते हैं।

अभी तक हम लोगों ने जाना कि विभिन्न प्रकार के वाइरस परपोषियों के विभिन्न अंगों की कोशिकाओं को संक्रमित करके उन्हें नष्ट करते हैं और घातक रोग उत्पन्न करते हैं तो कहीं ये जीवाणुओं को नष्ट करते हैं जिससे वह परपोषी जीवाणु रहित हो जाता है अतः वाइरसों का भी अपना आर्थिक महत्व होता है।

#### वाइरसों का आर्थिक महत्व

रोगजनकता के आधार पर कई प्रकार के वाइरस द्वारा फैलने वाले रोग होते हैं।

## वाइरल रोग (पादप)

**वाइरल रोग** (Viral Diseases) : पादपों में वाइरस मुख्यतः हरे पादपों की पत्तियों की कोशिकाओं को नष्ट करते हैं।वे मिट्टी से जल या बीजों द्वारा अथवा पत्तियों के परस्पर सम्पर्क से नये पौधों को संक्रमित करते हैं।

मनुष्य में वाइरसों द्वारा मुख्यतः निम्नलिखित संक्रामक रोग होते हैं। जुकाम (common cold), इन्फ्लुएंजा (influenza), पीत ज्वर (yellow fever), खसरा (measles), चेचक (smallpox), छोटी माता (chickenpox), पोलियो (polio), हरपीज (herpes), रैबीज (rabies or hydrophobia), गलसुआ (mumps), मस्तिष्क शोध (encephalitis), डेंगू (dengue), हिपेटाइटिस (hepatitis), एड्स (AIDS), कैन्सर (cancer), जइरान्त्रशोध (gastroentritis), तथा कंजिक्टवाइटिस (conjuctivitis), आदि।

**वाइरल रोगों के प्रकार** (Types of Viral Diseases) : प्रसार के आधार पर वाइरस जनित रोगों को चार वर्गों में बांटा गया है :

1. कदाचिनक या विरल (Sporadic) : इस प्रकार के वाइरस जिनत रोग संयोगवश, किसी भी क्षेत्र के और

किसी भी मनुष्य में हो सकते हैं, जैसे गलसुआ रोग (mumps)।

- 2. स्थानिक (Endemic) : ये रोग किसी विशेष छोटे से क्षेत्र में फैलते हैं, जैसे रेबीज (Rabies)।
- 3. महामारी (Epidemic) : ये रोग बड़े क्षेत्र में फैलकर महामारी का रूप ले लेते हैं, जैसे खसरा (measles), डेंगू (dengue), पीतज्वर (yellow fever)।
- 4. **सर्वव्यापी** (Pendemic) : अधिक विस्तृत स्तर पर फैली महामारियों का रूप लेकर कई देशों तक फैलने वाले वाइरल रोग सर्वव्यापी रोग कहलाते हैं, जैसे इन्फ्लूएन्जा (influenza) तथा AIDS।

विभिन्न प्रकार की विधियों का संक्रमण फैलाते हैं।

## वाइरल रोगों की संक्रमण विधियां (Methods of Viral Infection)

- वायु द्वारा (By Air) : इन्फ्लूएन्जा, जुकाम, खसरा, चेचक, छोटी माता, आदि रोगों के वाइरस वायु के साथ
   श्वसन मार्ग से मनुष्य के शरीर में प्रवेश करते हैं।
- 2. संक्रमित भोजन तथा पेय जल द्वारा (By Infected Food and Water) : हिपेटाइटिस, पोलियो तथा गैस्ट्रोएन्ट्राइटिस रोगों के वाइरस भोजन तथा पेय जल के साथ हमारे शरीर में पहुँचते हैं।
- 3. मूत्र-जनन मार्ग द्वारा (Through Urinogenital Tract) : AIDS या HIV वाइरस लैंगिक क्रिया के समय मूत्र-जनन मार्ग द्वारा शरीर में पहुंचते हैं।
- 4. संक्रमित इंजेक्शन की सुई द्वारा (By Infected Injection Needle) : Hepatitis-B और HIV viruses संक्रमित इंजेक्शन सुई द्वारा संक्रमित रुधिर के साथ शरीर में प्रवेश करते हैं।
- 5. संक्रमित जानवरों के काटने से (By the Bite of Infected Animals) : संक्रमित कुत्ते के काटने से रेबीज वाइरस तथा मच्छर के काटने से डेंगू व पीत ज्वर के वाइरस हमारे शरीर को संक्रमित करते हैं।

उद्भवन काल (Incubation Period): मानव शरीर में प्रवेश करने के बाद वाइरस कणों का संयोजी ऊतक, पेशी तन्त्र, तंत्रिका ऊतक तथा लसीका ऊतक में तेजी से गुणन (multiplication) होता है। संख्या में वृद्धि करने के बाद ही ये रोग उत्पन्न करते हैं। संक्रमण और रोग के प्रथम बार लक्षणों के विकास के बीच का समय उद्भवन काल (incubation period) कहलाता है। यह कुछ दिनों से लेकर कई वर्ष तक हो सकता है।

## वाइरस संक्रमण के प्रति प्राकृतिक सुरक्षा (Natural Defense against Viral Infections)

1. शरीर का प्रतिरक्षा तंत्र (Immune System of Body) वाइरस प्रतिजन या एन्टिजन (antigen) हैं जो विष पदार्थ (toxins) उत्पन्न कर परपोषी की शारीरिक क्रियाओं में बाधा पहुंचाते हैं और रोग उत्पन्न करते हैं। प्रतिरक्षा तंत्र (immune system) परजीवी तथा उनसे उत्पन्न विष पदार्थों को नष्ट करके शरीर का रोगों से बचाव करता है। यह नये

बने विषैले पदार्थों (toxins) या एंटीजन को नष्ट करने के लिए नयी **एंटीबॉडीज** (antibodies) बनाता है। प्रतिरक्षा तंत्र की लिम्फोसाइट कोशिकायें प्रत्येक वाइरस के प्रतिजन के लिये विशेष प्रतिजन-विनाशक बनाते हैं। इन्हें **प्रतिरक्षी प्रोटीन्स** या **एंटीबॉडीज** (antibodies) कहते हैं। कुछ लिम्फोसाइट्स स्मृति कोशिकाओं (memory cells) में बदल जाते हैं। ये भविष्य में इसी वाइरस के दुबारा संक्रमण से शरीर की सुरक्षा करते हैं। इस प्रकार संक्रमणकारी वाइरस के विरुद्ध प्रतिरक्षा स्थापित हो जाती है।

2. इन्टरफेरॉन (Interferon) आइसेक्स एवं लिन्डनमान (Isaacs and Lindenmann) ने 1957 में पता लगाया कि वाइरस से संक्रमित कोशिकायें एक विशेष प्रकार का ग्लाइकोप्रोटीन (glycoprotein) बनाती हैं जो निकटवर्ती कोशिकाओं में पहुंचकर उनमें वाइरस संक्रमण के लिए प्रतिरोध क्षमता को बढ़ाता है। इस वाइरसरोधी (antiviral) पदार्थ को इन्टरफेरॉन कहते हैं। इनके द्वारा समीपस्थ कोशिकायें वाइरस के प्रति प्रतिरोधी हो जाती हैं। वाइरस संक्रमणों के प्रति रोग निरोधक व रोगनिवारक औषधियों के रूप में इन्टरफेरॉन का उपयोग किया जाता है।



# वाइरस द्वारा होने वाले रोगों का उपचार (Treatment of Viral Dieseases)

- 1. टीका लगाना (Vaccination) : वाइरसजन्य रोगों से बचने के लिए वैज्ञानिकों ने अनेक टीकों या वैक्सीन (vaccines) का विकास किया है। टीका लगाने से मनुष्य की प्रतिरक्षण क्षमता बढ़ जाती है या रोग वाले वाइरस की क्षमता क्षीण हो जाती है। इस प्रकार वाइरस-जन्य रोगों के प्रसार को रोका जा सकता है। चेचक, पोलियो, खसरा, आदि के महामारी प्रकोप से बचाने के लिए शिश्जां को उपयुक्त टीके नियमित रूप से लगाये जाते हैं।
- 2. रसायन चिकित्सा (Chemotherapy) : बैक्टीरियल रोगों के उपचार के लिये उपयोग में लाये जाने वाले एंटीबॉयोटिक्स (antibiotics) वाइरस-जिनत रोगों के उपचार में प्रभावहीन होते हैं। प्रतिवाइरस (antiviral) औषधियों की

संख्या बहुत कम है जैसे चेचक के लिए **थायोसेमीकार्बेजोन** (thiosemicarbazone), इन्फ्लूएन्जा के लिए **राइबाविरिन** (ribavirin) तथा हिपेटाइटिस-B के लिये **फोस्कार्नेट** (foscarnet), आदि एंटीवाइरल औषधियां हैं।

3. वाइरस-पोषक कोशिका विशिष्टता (Virus-host Cell Specificity) : प्रत्येक वाइरस एक विशेष प्रकार की कोशिकाओं को ही संक्रमित करता है। जुकाम व इन्फ्लुएन्जा के वाइरस श्वसन तंत्र की म्यूकस मेम्ब्रेन की कोशिकाओं को संक्रमित करते हैं और पोलियो वाइरस मस्तिष्क या केन्द्रीय तंत्रिका तंत्र की कोशिकाओं को तथा पीत ज्वर का वाइरस यकृत, स्प्लीन एवम् वृक्क की कोशिकाओं में ही प्रवेश करते हैं। वाइरस के कैप्सिड प्रोटीन उन्हें प्रतिजनी या ऐन्टीजनी (antigenic) लक्षण प्रदान करते हैं जिससे ये विशेष ऊतक कोशिकाओं को पहचानते हैं।

वाइरस रोग तो फैलाते ही है साथ ही ये उपयोगी भी होते हैं। उपयोगिता निम्नलिखित हैं।

## वाइरसों की उपयोगिता (Benefits of Viruses)

कुछ वाइरस मनुष्य के लिये अति लाभदायक हैं जैसे :

- 1. बैक्टीरियोफेज जीवाणुओं को नष्ट करते हैं। अतः रोगजनक बैक्टीरिया को नष्ट करने तथा उनसे उत्पन्न रोगों के उपचार एवं रोकथाम में इनकी इस क्षमता का उपयोग किया जा सकता है, जैसे अतिचार या पेचिश (dysentry or diarrhoea), आंत्रशोध (entritis and colitis) उत्पन्न करने वाले जीवाणु, एशेरिकिया कोलाई (Escherichia coli), को नष्ट करके रोग निवारण के लिए फेज  $T_2$  (phage  $T_2$ ) का उपयोग किया जा सकता है।
- 2. आनुवंशिक अनुसंधानों तथा आनुवंशिक यांत्रिकी (genetic engineering) में वाइरस तथा बैक्टीरियोफेज, आदि का प्रयोग सफलतापूर्वक किया जा रहा है।

## जीवाणु

#### क्रिया कलाप

प्रशिक्षक प्रशिक्षुओं से प्रश्न करें-

- 1. कुछ ऐसे रोगों के नाम बताइये जो जीवाणु से होते हैं?
- 2. गर्मियों में बना हुआ खाना शाम तक खराब क्यों हो जाता है?
- 3. दूध से दही किसके कारण बनता है?
- 4. गन्ने के रस से सिरका कैसे बनता है?

## प्रस्तुतीकरण-

ऊपर पूछे गये सभी प्रश्नों का उत्तर 'जीवाणु' है।

विज्ञान की वह शाखा जिसमें जीवाणुओं की रचना, आकार, वर्गीकरण, वृद्धि, जनन तथा फिजियोलोजिकल मेटाबोलिज्म

आदि को विषय में अध्ययन किया जाता है, जीवाणु विज्ञान (bacteriology) कहलाती है। सामान्यतः हमारे चारों तरफ के वातावरण में सूक्ष्म जीव (microbes) उपस्थित रहते हैं। ये हमारे दैनिक जीवन को प्रत्यक्ष अथवा परोक्ष रूप से प्रभावित करते हैं। जीवाणु एक कोशीय (unicellular) सूक्ष्मजीव है। इनको सूक्ष्मदर्शी की सहायता से ही देखा जा सकता है।

जीवाणु की खोज सर्वप्रथम हालैण्ड निवासी एण्टोनी वान ल्यूवेन हाक ने की थी। इन्होंने 1676 में अपने द्वारा निर्मित सूक्ष्मदर्शी से जीवाणुओं को पानी में तथा अपने दांतों के मैल में देखा तथा इसे एनीमलक्यूल्स (animalcules) का नाम दिया।

लुई पाश्चर (Louis Pasteur, 1882-1895) ने अपने अध्ययन से सिद्ध किया कि किण्वन (fermentation) की क्रिया सूक्ष्मजीव द्वारा होती है। इसने स्वतःजनन (spontaneous generation) को गलत साबित किया तथा रोगों की उत्पत्ति रोगाणुओं द्वारा (germ theory of disease) के सिद्धान्त का प्रतिपादन किया।

राबर्ट कोच (Robert Koch, 1843-1910) ने एन्थ्रेक्स (anthrax) व क्षयरोग (tuberculosis) के जीवाणुओं का पता लगाया।

जे**०** लिस्टर (J. Lister, 1827-1912) ने एसेप्टिक तकनीक (aseptic technique) की खोज की तथा जीवाणुओं को पृथक करने व कृत्रिम संवर्धन के लिए प्योर कल्चर (pure culture) की खोज की।

हैन्स क्रिशिचियन ग्राम (Hans Christian Gram, 1853-1938) ने जीवाणुओं के लिए ग्राम स्टेन (Gram stain) का आविष्कार किया।

एल0 सी0 कैलमैटी (L.C. Calmette, 1863-1933) ने बी0सी0जी0 (B.C.G.) वैक्सीन की खोज की।

## जीवाणुओं के सामान्य लक्षण (GENERAL CHARACTERS OF BACTERIA)

- 1. जीवाणु अत्यन्त सरल एवं एक कोशीय सूक्ष्मजीव हैं।
- 2. जीवाणु जल, थल, वायु आदि सभी स्थानों पर मिलते हैं। अधिकांश जीवाणु **क्लोरोफिल** (chlorophyll) न होने के कारण अपना भोजन स्वयं नहीं बना पाते हैं। अतः ये **मृतोपजीवी** (saprophytes) या **परजीवी** (parasites) होते हैं।
- 3. इनकी कोशा की रचना सरल होती हैं। ये अकेले व समूह में मिलते हैं। इनकी कोशा प्रोकेरियोटिक (procaryotic) होती है।
- 4. जीवाणु कोशा में नीले-हरे शैवालों (blue green algae) की तरह वास्तविक केन्द्रक (true nucleus) नहीं मिलता है। केन्द्रक में केन्द्रक कला (nuclear membrane) तथा न्यूक्लिओलस (nucleolus) का अभाव होता है। परन्तु डी.एन.ए. तथा आर.एन.ए. (DNA and RNA) मिलते हैं। इनके केन्द्रक को न्यूक्लियोइड (nucleoid) या एन्सीपिएन्ट न्यूक्यिलस (incipient nucleus) कहते हैं।

- 5. जीवाणु कोशा में **माइटोकॉण्ड्रिया** (mitochondria), **एण्डोप्लाज्मिक रेटीकुलम** (endoplasmic reticulum), **गाल्गी एपरेटस** (golgi apparatus) नहीं मिलते हैं।
  - 6. इनकी कोशा में मीजोसोम (mesosomes) होते हैं।
  - 7. डी.एन.ए. (DNA) में **हिस्टोन** (histone) प्रोटीन नहीं मिलती है।
  - 8. इनमें 70 S राइबोसोम (ribosomes) मिलते हैं।
  - 9. इनमें एक क्रोमोसोम वलय (ring) के रूप में होता है।
- 10. इनमें **वास्तविक लैंगिक जनन** (true sexual reproduction) नहीं मिलता है। जनन विखण्डन (fission) द्वारा होता है। परन्तु कुछ जीवाणुओं में **आनुवांशिक पुनर्योजन** (genetic recombinations) मिलते हैं। यह संयुग्मन (conjugation), टांसडक्शन (transduction) तथा **ट्रांसफोरमेशन** (transformation) द्वारा होता है।

## जीवाणुओं का वर्गीकरण (CLASSIFICATION OF BACTERIA)

वर्गीज मैनुअल आफ डिटरमिनेटिव बैक्टिरियोलोजी (Bergey's manual of determinative bacteriology) के आधार पर जीवाणुओं को शाइजोमाइसिटीज (Schizomycetes) वर्ग में रखा गया है तथा इनको 10 गणों (orders) में बाँटा गया है।

- 1. स्यूडोमोनाडेल्स (Pseudomonadales) : इस वर्ग के जीवाणु प्रकाश संश्लेषी, रसायनसंश्लेषी या परपोषी होते हैं। जनन विखण्डन द्वारा होता है; जैसे स्यूडोमोनास (Pseudomonas), जेन्थोमोनास (Xanthomonas) आदि।
- 2. क्लेमाइडोबैक्टिरिएल्स (Chlamydobacteriales) : जीवाणु जल में रहते हैं। कोशा आवरण (sheath) से ढकी होती है, जैसे टोक्सोथ्रिक्स (Toxothrix), लेप्टोथ्रिक्स (Leptothrix) आदि।
- 3. हाइपोमाइक्रोबिएल्स (Hypomicrobiales) : जीवाणु गोलाकार (round) या अण्डाकार (oval) होते हैं। जनन विखण्डन (fission) या मुकुलन (budding) द्वारा होता है; जैसे : हाइपोमाइक्रोबियम (Hypomicrobium) आदि।
- 4. यूबैक्टिरिएल्स (Eubacteriales) : जीवाणु चल, अचल गोलाकार, या छड़नुमा हो सकते हैं। जनन विखण्डन द्वारा होता है, जैसे : राइजोबियम (Rhizobium), एजोबेक्टर (Azobactor) आदि।
- 5. एक्टिनोमाइसिटेल्स (Actinomycetales) : जीवाणु तन्तुमय (filamentous) होते हैं। जनन कोनिडिया (conidia) द्वारा होता है; जैसे स्ट्रेप्टोमाइसिस (Streptomyces) आदि।
- 6. केरियोफेनेल्स (Caryophanales) : जीवाणु तन्तुमय होते हैं। जनन गोनिडिया द्वारा होता है, जैसे केरियोफेनोन (Caryophanon) आदि।
- 7. **बैगियाटोएल्स** (Beggiatoales) : कोशा **एकल** तथा सामूहिक तन्तु बनाती है। ये एट्राइकस (atrichous) होते हैं। जनन विखण्डन द्वारा होता है; जैसे **बैगियाटोआ** (Beggiatoa) आदि।
- **8. मिक्सोबैक्टीरिएल्स** (Myxobacteriales) : जीवाणु **छड़नुमा** तथा **श्लेष्मयुक्त** होते हैं। जनन विखण्डन द्वारा होता है, जैसे मिक्सोकोकस (Myxococcus) आदि।

- 9. स्पाइरोकीटेल्स (Spirochaetales) : जीवाणु, लम्बे सर्पिलाकार व एट्राइकस होते हैं। जनन विखण्डन द्वारा होता है; जैसे स्पाइरोकीट (Spirochaete) आदि।
- **10. माइकोपलाज्मेटेल्स** (Mycoplasmatales) : छोटे, परजीवी होते हैं जिनमें कोशाभित्ति अनुपस्थित होती है; जैसे **माइकोप्लाज्मा** (Mycoplasma) आदि।

## प्रकृति तथा आवास (HABIT AND HABITAT)

जीवाणु सर्वव्यापी (cosmopolitan) होते हैं। ये जल (water), थल (land), हवा (air), धूल (dust), मनुष्य व जन्तुओं के शरीर में, बरफ से ढके स्थानों में, उष्णस्रोतों (hotsprings) में भी मिलते हैं। ये दूध, दूध से बने पदार्थों में, आलू, फलों, सब्जियों, पौधों की जड़ों के निकट वाली मिट्टी (rhizosphere) आदि में प्रमुखता से मिलते हैं।

माप (Size) ः जीवाणुओं का अध्ययन सूक्ष्मदर्शी द्वारा किया जाता है। इनके माप की इकाई माइक्रान (micron) है। इनका माप इनके आकार पर निर्भर करता है। इनका औसत माप  $0.5-1.0~\mu\times2.0-5.0~\mu$  है। **बैगियाटोआ** मिराबिलिस (Beggiatoa mirabilis) एक बड़ा जीवाणु है जिसकी चौड़ाई  $15-20~\mu$  तथा लम्बाई कुछ सेन्टीमीटर होती है।

आकार (Shape) : आकार के अनुसार जीवाणु कई प्रकार के हो सकते हैं। एक जाति के सभी जीवाणु आकार में समान होते हैं। मुख्य रूप से इनके निम्न प्रकार होते हैं (चित्र 14.3) —

**A. कोकस** (Coccus-एकवचन; Cocci-बहुवचन) : ये जीवाणु **गोलाकार** (spherical) होते हैं तथा इनका व्यास 0.5 से 1.25 माइक्रान तक हो सकता है। ये निम्नवत प्रकार होते हैं—

(i) माइक्रोकोकाई (Micrococci): जब कोकस जीवाणु अकेले मिलते हैं तब इनको माइक्रोकोस कहते हैं; जैसे माइक्रोकोक्स एगिलिस (Micrococcus agilis)।



विभिन्न प्रकार के बेक्टीरिया

- (ii) डिप्लोकोकाई (Diplococci): जब कोकस दो के समूह (pair) में मिलते हैं जैसे डिप्लोकोकस निमोनी (Diplococcus pneumoniae)।
- (iii) स्ट्रेप्टोकोकाई (Streptococci) : जब कोकस जीवाणु एक लम्बी शृंखला (chain) में मिलते हैं; जैसे स्ट्रेप्टोकोकस लैक्टिस (Streptococcus lactis)।
  - (iv) टेट्राड (Tetrad) : जीवाणु चार के समूह में मिलते हैं; जैसे नाइजिरिआ (Neisseria)।
- (v) स्टेफाइलोकोकाई (Staphylococci) : कोकस जीवाणुओं के अनियमित (irregular) समूह (group) को स्टेफाइलोकोकाई कहते हैं जैसे स्टेफाइलोकोकस अरियस (Staphylococus aureus)।
- (vi) सार्सीनी (Sarcinae): जब कोकस जीवाणु तीन तलों में विभाजित होकर 8 या अधिक कोशाओं का घनाभ (cuboidal) बनाते हैं। उसको सार्सीनी कहते है, जैसे सार्सीना लुटिया (Sarcina lutea).
- B. बैसीलस (Bacillus एकवचन, Bacilli-बहुवचन) : ये जीवाणु जड़ (rod) या डण्डे के आकार के होते हैं। ये चल (motile) या अचल (nonmotile) हो सकते हैं। ये निम्न प्रकार के होते हैं
  - (i) डिप्लोबैसीलस (Diplobacillus): जब बैसीलस दो के समूह या जोड़े (pair) में मिलते हैं।
- (ii) स्ट्रेप्टोबैसीलस (Streptobacillus) : जब बैसीलस शृंखला (chain) में मिलते हैं; जैसे बैसीलस ट्यूबरकुलोसिस (Bacillus tuberculosis)।
- **C. सर्पिल या कुंडिलत** (Spiral or helical) : ये जीवाणु सर्पिल या हेलीकल आकार के होते हैं। इनका आकार कोकस व वैसीलस से बड़ा होता है। इनकी लम्बाई 10-50 माइक्रॉन तथा चौड़ाई 0.5 से 3.0 माइक्रॉन (micron) तक हो सकती है। इनमें फ्लैजला (flagella) भी मिलते हैं, जैसे स्पाइरिलम माइनस (Spirillum minus) आदि। उपरोक्त आकारों के अलावा जीवाणु कुछ अन्य आकारों में भी मिलते हैं। इनका वर्णन निम्नवत् है :
- 1. कोमा (Comma) : जीवाणु सूक्ष्म मुड़ी हुई छड़ की आकृति में होते हैं। इनका आकार कामा (comma) के समान होता है। इनके सिरे पर फ्लैजला भी मिल सकते हैं; जैसे विश्वियो कोलेरी (Vibrio cholerae) आदि।
- 2. फिलामेन्टस (Filamentous) : कुछ जीवाणु तन्तु के समान आकार के होते हैं जैसे **बैगियाटोआ** (Beggiatoa) आदि।
- 3. बहुरूपी (Pleomorphic) : कुछ जीवाणु अपने आकार में वातावरण के अनुसार अस्थाई परिवर्तन करने की क्षमता रखते हैं; जैसे एसीटोबेक्टर (Acetobactor) बैसीलस तथा स्ट्रैप्टोबैसीलस के रूप में मिलता है।

## जीवाणु कोशिका की रचना (STRUCTURE OF BACTERIAL CELL)

जीवाणु **एक कोशीय** (unicellular) **सूक्ष्मजीव** है। इसकी कोशा **प्रोकेरियोटिक** (procaryotic) होती है। कोशाभित्ति स्पष्ट होती है तथा एक **आवरण** (slimc layer) अथवा **केप्सूल** (capsule) से ढकी हो सकती है। इसकी

संरचना का अध्ययन करने में इलेक्ट्रॉन सूक्ष्मदर्शी (electron microscope) व नयी विकसित स्टेनिंग तकनीकों से बहुत सहायता मिली है (चित्र 14.4)।



जीवाणु कोशिका

स्लाइम पर्त (Slime layer) : यह कोशाभित्ति के बाहर एक आवरण के रूप में मिलती है। इसमें पानी की अधिकता होने के कारण आवश्यकता पड़ने पर यह जीवाणुकोशा की पानी की कमी को पूरा करने में सक्षम होती है। इसकी संरचना जीवाणुओं की विभिन्न जातियों में अलग-अलग होती है। इसमें पोलीसैकराइड (polysacchrides), जैसे डेक्स्ट्रान (dextrans), लेवान (levans) तथा अमीनोअम्ल (amino acids) से निर्मित पोलीपेप्टाइड चैन (polypeptide chain) हो सकती हैं। एक मत के अनुसार यदि यह पर्त पोलीसैकराइड से बनी होती है तो स्लाइम लेयर कहलाती है। यदि इसमें नाइट्रोजन युक्त पदार्थ भी होते हैं तो यह कैप्सूल (capsule) कहलाती है। इसमें जीवाणु की सुरक्षा होती है।

कोशाभित्ति (Cell wall) : कोशाभित्ति की संरचना यूकेरियोटिक (eucaryotic) कोशा से भिन्न होती है। कोशाभित्ति प्रबल तथा दृढ़ (rigid) होती है। ग्राम पोजीटिव तथा ग्राम नेगेटिव जीवाणु (gram positive and gram negative bacteria) की भित्ति की मोटाई व रासायनिक संरचना में भी अन्तर होता है।

## जीवाणुओं में पोषण

पोषण विधि के आधार पर जीवाणुओं को तीन भागों में वर्गीकृत किया गया है—

**A. स्वयं पोषित** (Autotrophic): इस प्रकार के जीवाणु अपना भोजन स्वयं बनाते हैं ये निम्नलिखित प्रकार के होते हैं—

प्रकाश संश्लेषी (Photosynthetic or Photoautotrophic) : कुछ जीवाणुओं में क्लोरोफिल से मिलते जुलते वर्णक मिलते हैं। जिससे ये अपना भोजन स्वयं बनाते हैं।

- B. परपोषित जीवाणु (Hetorotrophic bacteria) : ये जीवाणु अपने भोजन के लिए परजीवी (parasites) की तरह अन्य जीवों पर या मृतोपजीवी (saphrophytes) की तरह सड़े गले कार्बनिक पदार्थों पर या मृत जीवों पर निर्भर होते हैं।
- (i) परजीवी (Parasites) : इस वर्ग के जीवाणु अपना भोजन जीवत जीव जन्तुओं या पौधों से प्राप्त करते हैं। इनके कुछ उदाहरण है स्ट्रेप्टोकोकस (Streptococcus), माइकोबैक्टीरियम ट्यूबरकुलोसिस (Mycobacterium tuberculosis) आदि।
- (ii) मृतोपजीवी (Saprophytes) : ये जीवाणु मृत (dead), सड़े गले पेड़ पौधों या जीव जन्तुओं पर भोजन के लिए निर्भर रहते हैं। ये जटिल कार्बनिक योगिकों को सरल पदार्थों में परिवर्तित कर उनका उपयोग करते हैं, जैसे वैसीलस माइकोइडिस (Bacillus mycoides) तथा वै0 रैमोमस आदि।
- C. सहजीवी जीवाणु (Symbiotic bacteria) : कुछ जीवाणु, जैसे राइबोबियम पौधों की जड़ों में उपस्थित ग्रन्थियों (nodules) में मिलते हैं। इससे जीवाणु तथा पौधा एक दूसरे में लाभान्वित होते हैं। पौधे जीवाणु को रहने का स्थान देते हैं तथा इसके बदले जीवाणु नाइट्रोजन स्थिरीकरण (nitrogen fixation) कर पौधे को लाभ पहुँचाते हैं।

## जीवाणुओं में जनन

## (REPRODUCTION IN BACTERIA)

जीवाणुओं में जनन मुख्य रूप से वर्धी (vegetative) तथा अलैंगिक (asexual) विधियों से होता है। जीवाणुओं में वास्तविक लैंगिक जनन (true sexual reproduction) नहीं मिलता है। परन्तु अब इलेक्ट्रॉन सूक्ष्मदर्शी द्वारा अध्ययन से यह स्पष्ट हो चुका है कि जीवाणुओं की कुछ जातियों में आनुवांशिक पुनर्योजन (genetic recombinations) अर्थात् आनुवांशिक पदार्थ या विनिमय (exchange of genetic material) होता है।

- A. कायिक जनन (Vegetative reproduction) : इस प्रकार का जनन विखण्डन (fission) तथा मुकुलन (budding) द्वारा होता है।
- (i) विखण्डन द्वारा (By binary fission) : उचित व अनुकूल वातावरण में जीवाणु कोशिका एक अनुप्रस्थ भित्ति (transverse wall) द्वारा दो संतित कोशाओं (daughter cells) में बट जाती है। विखण्डन से पूर्व कोशा अपने आकार में बढ़ती है। फिर धीरे-धीरे जीवद्रव्य मध्य में संकीर्णन (constriction) तथा अनुप्रस्थ भित्ति बनने के कारण दो बराबर

भागों में विभाजित हो जाता है। यह क्रिया बहुत तीव्रता के साथ होती है। ये दोनों भाग अलग होकर दो कोशाओं का निर्माण करते हैं। कोशायें आकार में बढ़कर पूर्ण विकसित होती है तथा फिर विखण्डन द्वारा जनन करती हैं। अनुकूल परिस्थितियों के होने पर लगभग 15-20 मिनट में एशरिशिया कोलाई (Escherichia coli) विखण्डन द्वारा एक बार विभाजित होता है। विखण्डन जीवाण् की सभी जातियों में मिलता है।

- (ii) मुकुलन द्वारा (by budding) : इस विधि में जीवाणुकोशा से एक उभार (out growth) के समान रचना निकलती है। फिर इसमें कोशाद्रव्य तथा केन्द्रकीय पदार्थ (cytoplasm and nuclear material) आ जाते हैं। पूर्ण विकसित होने पर मुकुल (bud) जनन कोशा से संकीर्णन (constriction) द्वारा पृथक होकर नयी कोशा के रूप में कार्य करती है, जैसे हाइफोमाइक्रोबियम (Hyphomicrobium) आदि में।
- **B. अलैंगिक जनन** (Asexual reproduction) : यह अनेक प्रकार से होता है। इसकी मुख्य विधियों का वर्णन



चित्र : जीवाणु में विखण्डन की क्रिया

(i) अन्तः बीजाणु द्वारा (By endospore) : ये एक प्रकार के प्रतिरोधी (resistant) प्रकार के स्पोर है जो बैसीलस (Bacillus) तथा क्लॉस्ट्रीडियम (Clostridium) प्रकार के जीवाणुओं में अधिकता से बनते हैं। एण्डोस्पोर प्रायः जीवाणु के सिरे पर (terminal) या सिरे के पास (subterminal) या मध्य भाग (middle) में बन सकते हैं।



चित्र : जीवाणु में अन्तःस्पोर का बनना

- (ii) कोनेडिया द्वारा (By Couidia) : उदाहरण—स्ट्रेप्टोमाइसीज
- (iii) जूस्पोर द्वारा (By Zoospore) : कुछ जीवाणु जैसे राइजोबियम (rhizobium) में जूस्पोर का निर्माण होता है जिनसे नये जीवाणु बनते हैं।
- (iv) सिस्ट द्वारा (By Cyst) : एजोबेक्टर (Azobactor) जीवाणु में कोशिका के चारों तरफ एक मोटी भित्ति बन जाती है जिससे यह एक सिस्ट का रूप धारण कर लेती है। अनुकूल वातावरण में सिस्ट अंकुरित होकर नये जीवाणु को जन्म देती है।

**लैंगिक जनन** : जीवाणुओं में अन्य जीवों की तरह युग्मकों का संलयन नहीं होता है परन्तु इनमें आनुवांशिक पदार्थ का विनिमय होता है ये तीन प्रकार से होता है—

- (1) रूपान्तरण (Transformation)
- (2) ट्रान्सडक्शन (Transduction)
- (3) कान्जुगेशन (Conjugation)



जीवाणु में आनुवंशिक पुनयोंजन की विभिन्न विधियां

## जीवाणुओं का आर्थिक महत्व (ECONOMIC IMPORTANCE OF BACTERIA)

जीवाणु से मनुष्य जाति को लाभ व हानियाँ दोनों होती हैं। इनका वर्णन निम्नवत प्रकार है :

- A. लाभप्रद क्रियायें (Useful activities)
- 1. जीवाणु भूमि उर्वरता (Soil fertility) की वृद्धि में सहायता करते हैं। भूमि से पौधों को निरन्तर नाइट्रोजन वाले पदार्थ उपलब्ध कराने में सहयोग देने वाले जीवाणुओं को तीन वर्गों में रखा गया है-
- (a) अमोनीकारक जीवाणु (Ammonifying bacteria) : ये जीवाणु भूमि में उपस्थित प्रोटीन युक्त पदार्थों (proteinaceous substances) को अमोनिया में परिवर्तित कर देते हैं। मुक्त अमोनिया जल तथा  $CO_2$  से मिलकर अमोनियम कार्बोनेट (ammonium carbonate) बनाती है। कुछ फसलें (जैसे : cereal crops) अमोनियम यौगिकों को नाइट्रोजन के स्रोत के रूप में उपयोग करती है। **बैसीलस माइकोइंडिस** (Bacillus mycoides), **बै0 रेमोसस** (B. ramosus) आदि अमीनोकारक जीवाणु हैं।

60

- (b) नाइट्रोजन स्थिरीकरण (Nitrogen fixation) : कुछ जीवाणु वायु में उपस्थित नाइट्रोजन को नाइट्रोजन के यौगिकों में बदल देते हैं।
- (i) कुछ जीवाणु जैसे **एजोटोबेक्टर** (Azotobacter) तथा क्लोस्ट्रीडियम (Clostridium) मिट्टी में स्वतन्त्र रूप में रहते हैं। ये मिट्टी के कणों के बीच उपस्थित वायु से नाइट्रोजन अवशोषित करके कार्बनिक नाइट्रोजन यौगिकों में परिवर्तन कर देते हैं। इन जीवाणुओं की मृत्यु होने पर इनके अपघटन से मुक्त अमोनिया जीवाणुओं की सहायता से पहले नाइट्राइट फिर नाइट्रेट में परिवर्तित होती है। जिसका पौधों द्वारा उपयोग किया जा सकता है।
- (ii) लेग्यूमिनोसी कुल के पौधों (जैसे चना, मटर) की जड़ों में ग्रन्थियां (nodules) मिलती हैं। इनमें रहने वाले जीवाणु (राइजोबियम लेग्यूमिनोसेरम, Rhizobium leguminosarum) वायु से मुक्त नाइट्रोजन को अवशोषित करके नाइट्रोजन यौगिक बनाते हैं। इसमें पौधे जीवाणु को रहने का स्थान देते हैं तथा बदले में जीवाणु पौधे को नाइट्रोजन यौगिक देते हैं। यह सहजीवन (symbiosis) का एक अनुपम उदाहरण है। इससे भूमि की उर्वरता (fertility) में वृद्धि होती है।
  - (iii) नाइदीफाइंग जीवाणु (Nitrifying bacteria) : ये दो प्रकार के होते हैं :
  - (a) अमोनिया को नाइट्राइट (NO<sub>2</sub>) में परिवर्तित करने वाले जीवाणु जैसे नाइट्रोसोमानास (Nitrosomonas)
  - (b) नाइट्राइट को नाइट्रेट में बदलने वाले जीवाणु, जैसे नाइट्रोबेक्टर (Nitrobacter)
- 2. खाद्य शृंखला में (In food Chain) : कुछ जीवाणु पौधों व जन्तुओं के मृत शरीर के जटिल कार्बनिक पदार्थों को सरल अकार्बनिक पदार्थों में परिवर्तित कर देते हैं। इस प्रकार से भूमि में उपयोगी तत्व संचित होते हैं तथा पौधे सुगमता से उनका उपयोग करते हैं।
- 3. जीवाणुओं का उद्योगों में महत्व (Importance of bacteria in industry) : औद्योगिक क्षेत्र में जीवाणुओं का महत्वपूर्ण स्थान है। इनके द्वारा अनेकों रासायनिक क्रियायें होती है। उनमें से कुछ का वर्णन निम्नवत है :—
  - (a) डेरी उद्योगों में (In dairy industry)

दूध से बनने वाले तथा दैनिक जीवन में उपयोग आने वाले अनेकों उत्पादों (जैसे दही, पनीर, मक्खन आदि) को बनाने में लैक्टिक एसिड जीवाणु का उपयोग होता है। ये जीवाणु दूध की लैक्टोज शुगर (Lactose sugar) को लैक्टिक एसिड में बदल देते हैं जिससे दूध खड़ा हो जाता है। इस प्रकार की किण्वन क्रिया करने वाले जीवाणुओं में स्ट्रेंग्टोकोकस लेक्टिस (Streptococcus lactis), लेक्टोबैसीलस केसाई (Lactobacillus casei) आदि प्रमुख हैं।

- (b) जीवाणु अन्य पदार्थों के बनाने में भी सहायक होते हैं इनका विवरण **तालिका 14.2** में है।
- (c) **औषधियों के निर्माण में** (In preparations of medicines) : जीवाणुओं से अनेको **एण्टीबायोटिक्स** (antibiotics) प्राप्त होती है। इनमें मनुष्य तथा पौधों में होने वाले अनेक रोगों का उपचार किया जाता है।
  - (d) मल के अपघटन में (In preparation of medicines) : कृत्रिम जलाशयों में मलमूत्र, सड़े गले पदार्थ आदि

एकत्रित हो जाते हैं जिनसे कभी-कभी बीमारी आदि का खतरा होने लगता है परन्तु जीवाणु द्वारा इनका अपघटन होने से इनका उपयोग पौधों द्वारा संभव है। इस क्रिया में जिटल कार्बनिक पदार्थ सरल अकार्बनिक पदार्थों में परिवर्तित होते हैं। इसमें निकलने वाली  $\mathbf{CO}_2$  का उपयोग **प्रौदाल** ( $\mathbf{Algae}$ ) कर लेती है। जिससे  $\mathbf{O}_2$  निकलती है जिसका उपयोग अपघटन में होता है। अतः शैवाल तथा जीवाणु सहजीविता प्रदर्शित करते हैं।

#### B. हानिकारक क्रियाएं (Harmful activities)

- (a) खाद्य पदार्थों का दूषण (Spoilage of food) : जीवाणु खाने पीने के पदार्थों पर सुगमता से वृद्धि करते हैं। कभी-कभी कुछ जीवाणु खाद्य पदार्थों का अपघटन करके उनमें विषैले पदार्थों (toxic substances) का संचय कर देते हैं। इन पदार्थों के सेवन से खाद्य विषाक्तता (food poisoning) होने का खतरा रहता है। इस प्रकार के कुछ जीवाणु स्टफाइलोकोकस (Staphylococcus), माइक्रोकस (Micrococcus), क्लोस्ट्रोडियम बोटयूलिनम (Clostridium botulinum) आदि हैं।
- (b) **डीनाइट्रीफाइंग जीवाणु** (Denitrifying bacteria) : कुछ जीवाणु भूमि में उपस्थित नाइट्रेट को स्वतन्त्र नाइट्रोजन या अमोनिया में परिवर्तित कर देते हैं, जैसे **वैसीलस डीनाइट्रीफिकेन्स** (Bacillus dinitrificans) आदि है।
- (c) जीवाणुओं द्वारा मनुष्य तथा पौधों में अनेक रोग फैलाये जाते हैं। जिनकी मनुष्य द्वारा चिकित्सा में काफी धन व्यय होता है। पौधों में भी लगने वाली बीमारियों से प्रतिवर्ष अनाज सिब्जयों, फलों आदि की नुकसान होता है।

## खाद्य पदार्थों का प्रिजरवेशन (PRESERVATION OF FOOD MATERIALS)

- 1. कैनिंग (Canning) : डिब्बे में बन्द खाद्य पदार्थ आमतौर पर खाने के लिए लम्बे समय तक सुरक्षित रहते हैं। इनको भाप द्वारा 15 पौन्ड दाब पर करीब 15-20 मिनट तक गर्म किया जाता है। इस क्रिया में तापमान 121°C तक रहता है। इसमें सभी जीवाण तथा उनके स्पोर नष्ट हो जाते हैं।
- 2. पाश्चरीकरण (Pasteurization): इसका प्रयोग सर्वप्रथम लुई पाश्चर ने किया था। इसमें दूध को लगभग 62°C पर 30 मिनट तक गर्म किया जाता है या 71.7°C पर 15 सेकेन्ड तक गर्म करते हैं। इसमें दूध में साधारण रूप से मिलने वाले टाईफाइड व क्षय रोग आदि के जीवाणु नष्ट हो जाते हैं। परन्तु इस विधि द्वारा एण्डोस्पोर बनाने वाले जीवाणु नष्ट नहीं होते हैं।
- 3. कम ताप पर संचय (Low temperature storage) : दैनिक उपयोग में आने वाले खाद्य पदार्थों को फ्रीज (fridge) या फ्रीजर (freezer) में कम ताप पर रखा जाता है जिससे वे अधिक समय तक खाने योग्य रह सकें। कम ताप पर जीवाणु मरते तो नहीं है परन्तु उनकी उपापचयी क्रियायें, वृद्धि आदि पूर्ण रूप से रूक जाती हैं। इस विधि से अंडे, माँस, मछली, फल, सिब्जियाँ, फलों का रस, आदि का प्रिजरवेशन किया जाता है। फल, अंडे, माँस फलों के रस को लम्बे समय तक बहुत कम ताप पर (-10°C to -18°C) पर शीत संग्रहाकार (cold storage) में सुरक्षित रखा जा सकता है।

अधिक ताप जीवाणुओं के लिए **माइक्रोसाइडल** (microcidal; अर्थात उन्हें मृत करने वाला) तथा कम ताप **माइक्रोस्टेटिक** (microstatic; अर्थात उनकी वृद्धि रोकने वाला) होता है।

- 4. निर्जलीकरण (Dehydration) : निर्जलीकरण की क्रिया धूप या हवा में सुखाकर या उष्पा देकर की जाती है। खाद्य पदार्थों (जैसे **माँस, मछली, फल, सब्जी** आदि) का पानी निकल जाने पर वे अधिक समय तक सुरक्षित रह सकते हैं तथा जीवाणु उनको सुगमता से दूषित नहीं कर पाते हैं।
- 5. प्रिजरवेटिक्स का प्रयोग (Use of preservatives) : अचार तथा मुख्बा में अधिक मात्रा में नमक तथा चीनी डालने से जीवाणु व कवक आदि का जीवद्रव्य कुंचन (plasmolysis) हो जाता है जिससे ये पदार्थ अधिक समय तक सुरक्षित रहते हैं। यदि अचार में नमक तथा मुख्बों में चीनी की मात्रा कम हो तो जीवाणु व कवक बहुत तेजी के साथ इन पर वृद्धि करते हैं और ये पदार्थ खाने योग्य नहीं रहते हैं। आजकल कुछ रासायनिक पदार्थ भी प्रिजरवेटिक्स की भांति प्रयोग में लाये जाते हैं। उनमें बेनजोइक अम्ल (benzoic acid), सोरबिक अम्ल (sorbic acid) तथा एसीटिक अम्ल (acetic acid) प्रमुख है। नाइट्रेट व नाइट्राइट का प्रयोग मांस (meat) के प्रिजरवेशन में किया जाता है।

## आर्थिक महत्व-लाभप्रद जीवाणु एवं रोगाणु जीवाणु तालिका माइक्रोबाइलोजी आफ मिल्क प्रोडक्ट्स

#### (MICROBIOLOGY OF MILK PRODUCTS)

| पदार्थ (Product)           | जीवाणु (Bacteria)                                                           |  |
|----------------------------|-----------------------------------------------------------------------------|--|
| 1. बटर मिल्क (Butter milk) | लैक्टोबैसिलस बल्गेरिकस (Lactobacillus bulgaricus)                           |  |
| 2. योगर्ट (Yogurt)         | लैक्टोबैसिलस वलोरिकस + स्ट्रेप्टोकोकस थर्मीफिलस (Lactobacillus bulgaricus)  |  |
| 3. दही (Curd)              | स्ट्रेप्टोकोकस लैक्टिस (Streptococcus lactis), लैक्टोबैसीलस (Lactobacillus) |  |
| 4. पनीर (Cheese)           | लैक्टोबैसीलस लैक्टिस तथा (Lactobacillus lactis) स्ट्रेप्टोकोकस क्रिमोरिस    |  |
|                            | (Streptococcus cremoris)                                                    |  |
| 5. एसिडोफिलस मिल्क         | लैक्टोबैसीलस एसिडोफिलस                                                      |  |
| (Acidophilus milk)         | (Lactobacillus acidophilus)                                                 |  |

## जीवाणु तथा औद्योगिक पदार्थ

#### (BACTERIA AND INDUSTRIAL PRODUCTS)

| पदार्थ (Products)                     | जीवाणु (Bacteria)               |
|---------------------------------------|---------------------------------|
| 1. ऐसीटोन-ब्यूटोनाल (Acetone butanol) | क्लॉस्ट्रीडियम एसिटोब्यूटाइलिकम |
|                                       | (Clostridium acetobutylicum)    |
|                                       | 63                              |

| 2. लैक्टिस एसिड (Lactic acid)        | लैक्टोवैसीलस डेलब्रकी (Lactobacillus delbrueckii) |
|--------------------------------------|---------------------------------------------------|
| 3. लाइसिन (Lysine)                   | माइक्रोकोकस ग्लूटैंमिकस (Micrococcus glutamicus)  |
| 4. इन्सूलिन (Insulin) तथा इन्टरफेरोन | रिकोम्बीनेन्ट डी.एन.ए. वराइटीज आफ ई.              |
| (Interferon)                         | कोलाई (Recombinant DNA                            |
|                                      | varieties of E. coli)                             |
| 5. स्ट्रेप्टोकाइनेज (Streptokinase)  | स्ट्रेप्टोकोकस इक्वीसीमिलिस                       |
|                                      | (Streptococcus equisimilis)                       |

## तालिका प्रमुख एन्टीबाइटोक्सि तथा उनके स्रोत

(Main Antibiotics and Their Sources)

| (Main Antibiotics and Their Sources) |                                              |  |  |  |
|--------------------------------------|----------------------------------------------|--|--|--|
| एन्टीबाइटिक (Antibiotic)             | स्रोत (Sources)                              |  |  |  |
| 1. बैसिट्रासिन (Bacitracin)          | बैसीलस सब्टीलिस (Bacillus subtilis)          |  |  |  |
| 2. पोलीमिक्सिन (Polymyxin)           | वैसीलस पोलीमिक्सा (B. polymyxa)              |  |  |  |
| 3. वन्कोमाइसिन (Vancomycin)          | स्ट्रेप्टोमाइसिस ओरीन्टलिस (Streptomyces     |  |  |  |
|                                      | orientalis)                                  |  |  |  |
| 4. स्टेप्टोमाइसिन (Streptomycin)     | स्ट्रेप्टोमाइसिस ग्रीसियस (Streptomyces      |  |  |  |
|                                      | griseus)                                     |  |  |  |
| 5. क्लोरेम्फेनिकाल (Chloramphenicol) | स्ट्रेप्टोमाइसिस वेनिज्यूली (S. vene zuelae) |  |  |  |
| 6. इरथोमाइसिन (Erythromycin)         | स्ट्रेप्टोमाइसिस इरीथ्रीस (S. erythreus)     |  |  |  |
| 7. नियोमाइसिन (Neomycin)             | स्ट्रेप्टोमाइसिस फ्रेडी (S. fradiae)         |  |  |  |
| 8. टेट्रासाइक्लीन (Tetracyclines)    | स्ट्रेप्टोमाइसिस ओरिफेसियन्स                 |  |  |  |
|                                      | (S. aureofaciens)                            |  |  |  |
| 9. केनामाइसिन (Kanamycin)            | स्ट्रेप्टोमाइसिस केनामाइसिटीकस               |  |  |  |
| (S. Kanamyceticus)                   |                                              |  |  |  |
| 10. नियोमाइसिन (Neomycin)            | स्ट्रेप्टोमाइसिस फ्रेडी (S. fradiae)         |  |  |  |
| तालिका जी                            | वाणु तथा रोग                                 |  |  |  |
| (BACTERIA AND DISEASE)               |                                              |  |  |  |

| रोग (Diseases)                   | रोग पैदा करने वाले जीवाणु  |
|----------------------------------|----------------------------|
| A मनुष्य के रोग (Human diseases) | (Disease causing bacteria) |

| 1. हैजा (Choloera)                    | विब्रियो कोलेरी (Vibrio cholerae)               |
|---------------------------------------|-------------------------------------------------|
| 2. डिप्थीरिया (Diphtheria)            | कोर्नीबैक्टीरियम डिप्थीरी (Corynebacterium      |
|                                       | diphtheriae)                                    |
| 3. क्षय रोग (Tuberculosis)            | <br>  माइकोबैक्टिरियम ट्यूबकुलोसिस              |
|                                       | (Mycobacterium tuberculosis)                    |
| 4. टीटेनस (Tetanus)                   | क्लॉरस्ट्रिडियम टिटैनी (Clostridium tetani)     |
| 5. न्यूमोनिया (Pneumonia)             | स्ट्रेप्टोकोकस न्यूमोनी (Streptococcus          |
|                                       | pneumoniae)                                     |
| 6. सिफिलिस (Syphilis)                 | ट्रिपोनिमा पैलिडम (Treponema pallidum)          |
| 7. मेनिनजाईटिस (Meaningitis)          | नाइजिरीआ मेनिनजाइटिडीस (Neisseria               |
|                                       | meningitidis)                                   |
| 8. गोनेरिया (Gonorrhoea)              | नाइजिरीआ गोनोहरी (Neisseria                     |
|                                       | gonorrhoeae)                                    |
| 9. टाइफाइड (Typhoid)                  | सालमोनेला टाइफी (Salmonella typhi)              |
| 10. काली खाँसी (Whooping Cough)       | बोर्डेटेला पर्टूसिस (Bordetella pertussis)      |
| 11. कुछ रोग (Leprosy)                 | माइक्रोबैक्टीरियम लेप्री (Mycobacterium leprae) |
| 12. क्यूफीवर ( <b>Q feve</b> r)       | कोक्सीलिया बर्नेटी (Coxiella burneti)           |
| B पौधों के रोग                        | रोग पैदा करने वाले बैक्टीरिया                   |
| (Plant diseases)                      | (Disease causing bacteria)                      |
| 1. सिट्रस केंकर (Citrus canker)       | जैन्थोमोनास सिट्राई (Xanthomonas citri)         |
| 2. ब्लाइट आफ पैडी (Blight of Paddy)   | जैन्थोमोनास ओराइजी (Xanthomonas oryzae)         |
| 3. क्राउन गाल आफ शुगरबीट (Crown gall  | एय्रोबैक्टीरियम ट्यूमीफेसिएन्स                  |
| of sugar beet)                        | (Agrobacterium tumifaciens)                     |
| 4. एन्गूलर लीफ स्पाट आफ कोटन (Angular | जैन्थोमोनास माल्वेसिएरम (Xanthomonas            |
| leaf spot of cotton)                  | malvacearcim)                                   |
| 5. रिंग रॉट आफ पोटेटो (Ring rot       | जैन्थोमोनास सोलिनेसिएरम (Xanthomonas            |
| of potato)                            | solanacearum)                                   |
| 6. साफ्ट रॉट आफ मैंगों (Soft rot of   | बैक्टीरियम कार्टोवोरस (Bacterium                |
| mango)                                | cartovorus)                                     |

## इसे भी जानें

जीवाणुभक्षी (Bacteriophage) क्या है?

इसे जीवाणुओं का वाइरस कहते हैं क्योंकि ये जीवाणु कोशिका को नष्ट कर देता है अपने जैसे कई जीवाणु भक्षी (Bacterio phage) उत्पन्न करता है।

इस क्रिया में एक जीवाणु कोशिका के DNA का भाग दूसरी जीवाणु कोशिका में **जीवाणुभक्षी** (bacteriophage) द्वारा पहुँचाया जाता है इसका अध्ययन **जिन्डर** तथा **लेडरवर्ग** (Zinder and Laderberg, 1952) ने सर्वप्रथम किया था। **जीवाणुभक्षी** एक प्रकार का वाइरस है जो जीवाणु पर आक्रमण करता है।

ट्रांन्सडक्शन दो प्रकार का होता है :

1. विशिष्ट (Specialised) तथा 2. सामान्य (Generalised) ट्रान्सडक्शन

सामान्य ट्रान्सडक्शन (Generalised transduction) : यह प्रक्रिया निम्न क्रम में हो सकती है :



चित्र : जीवाणु पर बैक्टीरियोज का आक्रमण

(a) **जीवाणुभक्षी** जीवाणुकोशिका पर आक्रमण करता है तथा अपना DNA उसमें प्रवेश करा देता है।

- (b) जीवाणु (bacterium) का DNA छोटे-छोटे टुकड़ों में टूट जाता है। जीवाणुभक्षी अपने गुणन (multiplication) के लिए जीवाणु कोशा (host cell) का उपयोग करता है। कभी-कभी नये जीवाणु-भक्षी बनने में उसके DNA के साथ साथ जीवाणु के DNA का भाग भी चला जाता है।
- (c) जीवाणु कोशा के फटने पर असंख्य जीवाणुभक्षी बाहर निकलते हैं तथा दूसरे जीवाणुओं पर आक्रमण करते हैं। वे जीवाणुभक्षी (जिनमें पहले जीवाणु का DNA मौजूद है) जब जीवाणु पर आक्रमण करते हैं तब पहले जीवाणु के DNA को प्रवेश करा देते हैं। इस प्रकार दाता (donor) जीवाणु का DNA ग्राही (recipient) जीवाणु के DNA का भाग बन जाता है। इस प्रकार के चक्र को लायटिक चक्र (lytic cycle) तथा जीवाणुभक्षी को virulent phage कहते हैं।

#### प्रोटोजोआ

अभी तक हम लोगों ने सूक्ष्मजीव के अन्तर्गत वाइरस जो एक निर्जीव व सजीव के बीच की कड़ी है। इसके अतिरिक्त जीवाणु जो सामान्यतः हमारे चारों ओर उपस्थित हैं व परोक्ष रूप में हमें लाभ व हानि पहुँचाते हैं। उन दो सूक्ष्म जीवों के अतिरिक्त प्राणी वर्ग के अन्तर्गत एक कोशिकीय सूक्ष्म जीव हैं जिन्हें प्रोटोजुअन कहते हैं।

## प्रोटिस्टा जगत : संघ प्रोटोजोआ (KINGDOM PROTISTA : PHYLUM PROTOZOA)

## परिचय एवं इतिहास

### (Introduction and History)

इनका शरीर एककोशिकीय तथा सकेन्द्रकीय होता है। ये निम्नतम कोटि के तथा प्रथम जन्तु (Gr. Protos = first; Zoon = animal) है। इनकी लगभग 50,000 जातियां ज्ञात हैं।

सर्वप्रथम ल्यूवेनहॉक (Leeuwenhoek, 1677) ने सूक्ष्मदर्शी की सहायता से इनका अध्ययन किया। इन्होंने इन जन्तुओं को microscopic animalcules का नाम दिया। गोल्डफस (Goldfuss, 1922) ने इस संघ को प्रोटोजोआ (Protozoa) का नाम दिया। प्रोटोजोअन जन्तुओं के अध्ययन को प्रोटोजूलॉजी (Protozoology) कहते हैं।

#### सामान्य लक्षण (General Characters)

- 1. इसकी लगभग 50,000 जातियां हैं जो अलवण जल, स्थल एवं समुद्री जल में वास करती हैं। इसकी कुछ जातियां परजीवी के रूप में रहती हैं।
- 2. ये सरलतम रचना वाले एककोशिक व सूक्ष्मदर्शी जीव हैं। ये आद्य (primitive) तथा जीवद्रव्य श्रेणी के जन्तु हैं।
  - 3. अधिकांश एकल तथा कुछ निवह में रहते हैं। निवह के सभी जन्तुक समान तथा स्वतंत्र होते हैं।
  - 4. इनका शरीर असममित, द्विपार्श्व सममित, अरीय सममित या गोलाकार सममित होता है।

- 5. शरीर नग्न या इस पर पेलिकल (pellicle) का महीन आवरण होता है। कुछ में शरीर के बाहर बाह्यकंकाल के रूप में कवच या टेस्ट (test) होता है।
  - 6. जीवन की सभी क्रियाएं एक ही कोशिका के अन्दर होती हैं।
- 7. शरीर में एक या एक से अधिक केन्द्रक होते हैं। केन्द्रक एकरूपी (monomorphic) या द्विरूपी (dimorphic) होते हैं।
- 8. चलनांग पादाभ (pseudopodia), कशाभ (flagella) या सिलिया (cilia) होते हैं। कुछ में इनका अभाव होता है।
- 9. पोषण प्राणिसम (holozoic), पादपसम (holophytic), मृतोपजीवी (saprophytic) या परजीवी (parasitic) प्रकार का होता है।
  - 10. गुदा एवं मुख निश्चित छिद्रों के रूप में नहीं होते हैं तथा पाचन क्रिया अन्तःकोशिकी होती है।
  - 11. श्वसन विसरण द्वारा शरीर की सामान्य सतह से होता है।
- 12. उत्सर्जन संकुचनशील धानियों द्वारा या सामान्य सतह से होता है। संकुचनशील धानियां जल नियमन का कार्य भी करती हैं।
  - 13. जनन अलैंगिक एवं लैंगिक दोनों प्रकार से होता है।
  - 14. अलैंगिक जनन द्विखंडन, बहुखंडन या मुकुलन द्वारा तथा लैंगिक जनन संयुग्मन द्वारा होता है।
  - 15. जीवन चक्र में अलैंगिक एवं लैंगिक पीढ़ियों का एकान्तरण होता है।
- 16. पर्यावरण की प्रतिकूल परिस्थितियों में ये परिकोष्ठन करते हैं। अनुकूल दशाओं में आने पर ये सिस्ट से बाहर आकर वृद्धि करना प्रारम्भ कर देते हैं।
- 17. इनमें कायद्रव्य व जननद्रव्य (somatoplasm and germplasm) का विभेदन नहीं होता। इसी कारण इनकी प्राकृतिक मृत्यु नहीं होती।
- ये विभिन्न प्रकार के होते हैं। जैसे अपने प्रचलन के लिए, पोषण के लिए, जनन के लिए अतः इनका वर्गीकरण करना अति आवश्यक है।

#### वर्गीकरण (CLASSIFICATION)

प्रोटोजोआ के चलन अंगकों (locomotory organelles) तथा केन्द्रकों (nuclei) के आधार पर दो उपसंघों (subphyla) में बांटा है :

उपसंघ (अ) सार्कोमैस्टिगोफोरा (Sarcomastigophora)

1. ये सरल तथा आद्य प्रकार के होते हैं।

## उपसंघ (स) निडोस्पोरा (Subphylum Cnidospora)

68

- 1. स्पोरोजोआ की भांति अन्य जन्तुओं के परजीवी होते हैं।
- 2. चलनांग तथा संकुचनशील रिक्तिकाओं का अभाव।
- 3. जीवन चक्र में बीजाणुजनन होता है तथा बीजाणु बनते हैं। बीजाणुओं में ध्रुवीय तन्तु होते हैं। बीजाणुओं के विकास की विधि के आधार पर निडोस्पोरा को दो वर्गों में बांटा गया है :

# वर्ग 1. मिस्सोस्पोरिया (Class Mixosporea)

- 1. बीजाणुओं का विकास कई केन्द्रकों से।
- 2. बीजाणु खोल दो या तीन कपाटों का।

उदाहरण: सीरेटोमिक्सा (Ceratomyxa)।

# वर्ग 2. माइक्रोस्पोरिया (Class Microsporea)

- 1. बीजाणुओं का विकास एक केन्द्रक से।
- 2. बीजाण् खोल केवल एक कपाट का।

उदाहरण : नोसीमा (Nosema)।

#### उपसंघ (द) सिलियोफोरा (Subphylum Ciliophora)

- (L.Cilium = enelid, ferrae = to bear)
- 1. ये अत्यधिक जटिल होते हैं।
- 2. जीवन-चक्र की कम से कम एक अवस्था में गमन के लिये सीलिया (cilia) होते हैं अथवा चलन के लिए या वयस्क में भोजन ग्रहण के लिए चूषण टेन्टेकल (sucking tentacles) अवश्य पाये जाते हैं।
- 3. प्रायः दो प्रकार (dimorphic) के; बड़े केन्द्रक को मैक्रोन्यूक्लियस (macronucleus) तथा छोटे केन्द्रक की माइक्रोन्यूक्लियस (micronucleus) कहते हैं।
  - 4. शरीर पर दृढ़ पेलिकल (tough pellicle) पायी जाती है।
  - 5. अलैंगिक जनन द्विविभाजन द्वारा तथा लैंगिक जनन संयुग्मन द्वारा होता है।

## वर्ग 1. सिलिएटा (Class Ciliata or Infusoria)

- 1. जीवन चक्र जटिल होता है। दृढ़ पेलिकल पायी जाती है।
- 2. सीलिया (cilia) पूरे शरीर पर लगभग समान आकार के होते हैं।
- 3. दो आकार के केन्द्रक पाये जाते हैं : दीर्घकेन्द्रक तथा लघुकेन्द्रक।
- 4. पोषण प्राणीसम प्रकार का होता है।
- 5. पेलिकल के नीचे एक्टोप्लाज्म की परिधि पर ट्राइकोसिस्ट (trichocysts) पाये जाते हैं जो सुरक्षा (defense) अंगक हैं।

- 6. शरीर के अग्र व पश्च सिरे पर जल नियमन (osmoregulation) के लिए एक-एक संकुचनशील धानी (contractile vacuole) होती है।
  - 7. स्थाई कोशिकामुख (cytostome) व कोशिकागुद (cytopyge) पाये जाते हैं।
- 8. अलैंगिक जनन अनुप्रस्थ द्विविभाजन (transverse binary fission) द्वारा व लैंगिक जनन संयुग्मन (conjugation), ऑटोगेमी (autogamy), साइटोगेमी (cytogamy), एन्डोमिक्सिस (endomixis), हेमिक्सिस (hemixis) द्वारा होता है।

#### उदाहरण :

- 1. पैरामीशियम (Paramecium) : इसे स्लीपर जन्तुक (slipper animalcule) कहते हैं।
- 2. वॉटीसेला (Vorticella) : इसे घन्टी जन्तुक (bell animalcule) कहते हैं। यह सवृन्त (stalked) सदस्य है।
- 3. डिडीनयम (Didinium) : इसे जलीय भालू (water bear) भी कहते हैं।
- 4. स्पाइरोस्टोमम (Spirostomum) : यह सबसे बड़ा जीवित सिलिएट है। इसकी लम्बाई 4 mm होती है।
- 5. बैलेन्टीडियम (Balantidium) : यह मेंढक तथा मनुष्य के मलाशय का परजीवी है।
- 6. बैलेन्टीडियम कोली (Balantidium coli) : इस परजीवी से मनुष्य की बृहद्रांत्र (colon) में फोड़े (ulcer) हो जाते हैं तथा अतिसार (diarrhoea) रोग होता है।
  - 7. निक्टोथीरस (Nyctotherus) : यह भी मेंढक के मलाशय का परजीवी है।

#### वर्ग 2. सक्टोरिया (Class Suctoria)

- 1. इस वर्ग के सदस्य स्थानबद्ध (sessile) एवं सवृन्त (stalked) होते हैं।
- 2. वयस्कों में चूषण टेन्टेकल्स (sucking tentacles) पाये जाते हैं।
- 3. कोशिका मुख व कोशिकागुद अनुपस्थित होते हैं।
- 4. दीर्घ व लघु दोनों केन्द्रक उपस्थित, लेकिन मैक्रोन्यूक्लियस (macronucleus) शाखित होता है।
- 5. जनन बाह्य मुकुलन (external budding) द्वारा होता है।

उदाहरण : ऐसीनेटा (Acineta), एफीलोटा (Ephelota).

#### क्रिया कलाप-

प्रशिक्षक प्रशिक्षुओं से कहे कि एक गिलास में पानी भरकर कुछ फूलों का गुलदस्ता बनाये। एक हफ्ते के बाद उस गुलदस्ते का पानी का एक बूंद लेकर स्लाइड में रखकर, कवर स्लिप से ढक कर सूक्ष्मदर्शी से देखने पर आप को कौन-कौन से जीव दिखाई देते हैं—

अमीबा, युग्लीना, पैरामीशियम आदि।

# प्रोटोजोआ के कुछ प्रतिनिधि जन्तु

#### 1. यूग्लीना (EUGLENA)

यूग्लीना सड़ते हुए कार्बनिक पदार्थों वाले स्वच्छ जल में पाया जाता है। इसका शरीर तर्कु के समान (spindle-



चित्र : यूग्लीना

shaped) होता है तथा इसके चारों ओर **पेलीकल** (pellicle) का दृढ़ आवरण होता है। शरीर के अगले चौड़े सिरे पर कोशिकामुख (cytostome), कोशिका प्रसनी (cytopharynx) तथा रिजरवॉयर (reservoir) होते हैं। दो कशाभ (flagella) रिजरवॉयर के आधार से दो मूलों द्वारा विकसित होते हैं। छोटा कशाभ रिजरवॉयर के अन्दर ही रह जाता है। बड़ा कशाभ प्रचलन में सहायक होता है। रिजरवॉयर के पास एक contractile vacuole होता है। कोशिकाद्रव्य में एक केन्द्रक, अनेक क्लोरोप्लास्ट, एक contractile vacuole, स्टिगमा (stigma) या दृष्टिबिन्दु तथा संचित भोजन के रूप में पायरिनॉयड काय (pyrenoid bodies) होती हैं। इसमें पोषण वनस्पित-सदृश (holophytic) तथा कभी-कभी मृतजीवी होता है। जनन अनुलम्ब विभाजन तथा पुटीभवन (encystment) द्वारा होता है।

#### 2. पैरामीशियम (PARAMECIUM)

यह निदयों व जोहड़ों के स्वच्छ पानी में पाया जाने वाला एककोशिकीय सिलिएट है। इसका शरीर स्लीपर के समान (slipper-shaped) होता है। मुख झिर्री अधर तल पर होती है जो (cytostome) द्वारा कोशिका ग्रस्नी (cytopharynx) में खुलती है। पोषण प्राणि-सदृश (holozoic) होता है। शरीर का अगला सिरा कुंद (blunt) तथा पिछला सिरा नुकीला होता है। शरीर पर पेलीकल का आवरण होता है। जिस पर छोटे-छोटे सीलिया होते हैं। ये चलन में सहायक होते हैं। एक्टोप्लाज्म में ट्राइकोसिस्ट्स (trichocysts), मायोनीमी (myonemes) तथा सीलिया की आधार किणकायें (basal granules) होती हैं। एंडोप्लाज्म में सेम के बीज के आकार का एक बड़ा गुरुकेन्द्रक, एक लघुकेन्द्रक, दो संकुचनशील



चित्र : पैरामीशियम

धानियां (contractile vacuoles) तथा अनेक खाद्य धनियां (food vacuoles) होती हैं। अलैंगिक जनन द्विविभाजन द्वारा तथा लैंगिक जनन संयुग्मन (conjugation), एंडोमिक्सिस (endomixis), साइटोगैमी (cytogamy), ऑटोगैमी (autogamy) तथा हेमिक्सिस (hemixis) द्वारा होता है।

# अमीबा की आकृति एवं संरचना (Form and Structure of Amoeba)

परिमाण एवं आकार (Size and Shape) : अमीबा एक-कोशिकीय जन्तु है। सूक्ष्मदर्शी से देखने पर यह रंगहीन,

पारदर्शी तथा जैली के समान व अनियमित आकार का प्रतीत होता है। इसका आकार लगातार बदलता रहता है। अमीबा प्रोटियस 0.6 mm व्यास का होता है जबिक अन्य अमीबी 0.2 – 0.5 mm व्यास के होते हैं।

पादाभ या स्यूडोपोडिया (Pseudopodia) : अमीबा के शरीर से इधर-उधर जीवद्रव्य से बने छोटे-छोटे उभार निरन्तर बनते व समाप्त होते रहते हैं। ये पादाभ या स्यूडोपोडिया (pseudopodia) कहलाते हैं। इसी कारण अमीबा की आकृति सदैव बदलती रहती है। एक पादाभ बनने के बाद दूसरा पादाभ किसी दूसरे स्थान पर बनने लगता है तथा पहला पादाभ समाप्त होने लगता है। पादाभ चौड़े व अंगुली के समान सिरे पर गोल होते हैं। इस प्रकार के पादाभ लोबोपोडिया (lobopodia) कहलाते हैं। जिस सिरे पर पादाभ बनते हैं उसे अग्र सिरा तथा जिस सिरे पर ये समाप्त होते हैं उसे पश्च छोर कहते हैं। पश्च छोर पर विलीन होते हुए पादाभ शिकनों (wrinkles) के रूप में दिखाई देते हैं। अतः इस छोर को यूरोइड (uroid) कहते हैं। पादाभ अमीबा के चलन एवं भोजन पकड़ने के अंगक हैं।



अमीबा का शरीर भी एक सामान्य कोशिका के समान तीन भागों में बांटा जा सकता है :

1. जीवकला 2. कोशिकाद्रव्य 3. अन्तःप्रद्रव्यी संरचनायें

#### 1. जीवकला या प्लाज्मालेमा (Plasmalemma)

अमीबा को हम नग्न कह सकते हैं क्योंकि इसके शरीर पर एक प्रारूपी कोशिका के समान पतली, लचीली व अर्धपारगम्य जीवकला (plasmalemma) होती है। यह 1-2  $\mu$  मोटी होती है। इसकी निम्नलिखित विशेषतायें हैं : जीवकला पर म्यूकोप्रोटीन (mucoprotein) के बने सुक्ष्मांकुरों (microvilli) के रूप में असंख्य उभार होते हैं। इन उधारों की सहायता से अमीबा आधार से चिपका रहता है। इसमें से होकर जल तथा कुछ छोटे घुलनशील अणु स्वतंत्र रूप से आर-पार जा सकते हैं। इस प्रकार यह अन्तःपरासरण (endosmosis) में सहायता करती है। जीवकला में पुनर्जनन की क्षमता होती है। अतः यह टूट-फूट की शीघ्र ही मरम्मत कर लेती है। लचीली होने के कारण इससे पादाभ बनते हैं तथा पिनोसाइटोसिस (pinocytosis) द्वारा द्रव तथा फेगोसाइटोसिस द्वारा ठोस कण शरीर में प्रवेश करते हैं।

#### 2. कोशिकाद्रव्य (Cytoplasm)

प्लैज्मालेमा या जीवद्रव्य कला से घिरा अन्दर की ओर **कोशिकाद्रव्य** (cytoplasm) होता है। कोशिकाद्रव्य एक कोलॉयडीय पदार्थ है जिसमें शरीर की सभी जैविक क्रियाएं होती रहती हैं। अमीबा में कोशिकाद्रव्य दो भागों में विभेदित होता है:

1. एक्टोप्लाज्म, 2. एन्डोप्लाज्म।



चित्र : अमीबा (इंलेक्ट्रान माइक्रोस्कोप द्वारा)

- 1. बाह्यद्रव्य या एक्टोप्लाज्म (Ectoplasm) : यह प्लैज्मालेमा के ठीक नीचे एक पतले स्तर के रूप में होता है। यह साफ, अल्पपारदर्शी, गाढ़ा तथा बिना दानेदार (clear, transluscent and nongranular) होता है। नये बनने वाले पदार्भों के सिरों पर यह अपेक्षाकृत मोटी पर्त बनाता है जिसको काचाभ टोपी या हायलाइन टोपी (hyaline cap) कहते हैं।
- 2. अन्तः प्रद्रव्य या एण्डोप्लाज्म (Endoplasm or Endosarc)— यह कणिकामय, अपेक्षाकृत कम तन्तुकमय एवं अधिक तरल जीवद्रव्य का केन्द्रीय पिण्ड होता है। इसे प्लाज्मासॉल (plasmasol) भी कहते हैं। इसमें तरल के बहाव (streaming) की स्पष्ट गतियाँ होती रहती हैं जिन्हें चक्रगति (cyclosis) कहते हैं। मास्ट (1926) के मतानुसार, एण्डोप्लाज्म स्वयं बाहरी 'जेल' स्तर (प्लाज्माजेल) तथा भीतरी 'सॉल पिण्ड (प्लाज्मासॉल) में विभेदित होता है। इस मत की पृष्टि नहीं हुई है।



कोशिकाद्रव्य में निलम्बित रचनाएँ—साधारण प्रकाश सूक्ष्मदर्शी (Simple light microscope) से अमीबा के कोशिकाद्रव्य में एक केन्द्रक (nucleus) तथा तीन प्रकार की रिक्तिकाएँ (vacuoles) दिखाई दे जाती हैं—

- (क) कुंचनशील रिक्तिका (Contractile Vacuole)—यह एक्टोप्लाज्म में प्रायः शरीर के अस्थाई पिछले भाग में, स्वच्छ जलीय तरल के एक गोल बुलबुले के रूप में दिखाई देने वाली, अमीबा की सबसे स्पष्ट अन्तर्हित रचना होती है। इसके चारों ओर जीवद्रव्य कला जैसी महीन एवं लचीली संघनन झिल्ली (condensation membrane) का आवरण होता है। चारों ओर के कोशिकाद्रव्य में माइटोकॉण्ड्रिया का जमाव रहता है। यह रिक्तिका परासरण नियन्त्रण (osmoregulation) का काम करती है। इसमें कोशिकाद्रव्य से जल की अनावश्यक मात्रा निरन्तर एकत्रित होती रहती है जिसे यह बाहर निकालती रहती है। अतः यह कभी बड़ी और कभी छोटी दिखाई देती है तथा निश्चित समयान्तरों पर पलभर के लिए ओझल होती रहती है।
- (ख) खाद्य रिक्तिकाएँ (Food Vacuoles)—ये कई, पोषण से सम्बन्धित, अकुंचनशील धानियाँ होती हैं जो पूरे एण्डोप्लाज्म में, चक्रगित के साथ, इधर-उधर घूमती दिखाई देती हैं। इनकी आकृतियाँ एवं माप, भोजन-कणों की संख्या एवं आकार के अनुसार, विभिन्न होती हैं। ये स्थाई रचनाएँ नहीं होती; प्रत्येक खाद्य-धानी भोजन-अन्तर्ग्रहण (food ingestion) के फलस्वरूप बनती है और इसमें उपस्थित भोजन का पाचन हो जाने के बाद, बिहःश्लेपण (egestion) किया द्वारा बाहर की ओर फटकर समाप्त हो जाती है।
- (ग) जल रिक्तिकाएँ (Water Vacuoles)—ये एण्डोप्लाज्म में कुछ छोटी-छोटी, जल से भरी, रंगहीन एवं पारदर्शक अकुंचनशील जलधानियाँ होती हैं। इनका महत्त्व अज्ञात है।

**इलेक्ट्रॉन सूक्ष्मदर्शी** से अमीबा के एण्डोप्लाज्म में उन विभिन्न **अंगकों** (organelles) की उपस्थित का पता चला है जो एक सामान्य कोशिका में होते हैं—

- (1) अंतर्द्रव्यी जालिका अर्थात् एण्डोप्लाज्मिक जाल (Endoplasmic Reticulum)—यह परस्पर जुड़ी महीन निलंकाओं का जाल-सा होता है। अधिकांश निलंकाओं की सतह पर राइबोसोम्स (ribosomes) लगे होते हैं।
  - (2) माइटोकॉण्ड्रिया (Mitochondria)—ये प्रायः गोलाकार या अण्डाकार होते हैं।
  - (3) गॉल्जी समूह (Golgi Complex)—ये ऊपर-नीचे स्थित नालवत् पुटिकाओं के 2 या 3 समूह होते हैं।
- (4) लाइसोसोम्स (Lysosomes)—ये पाचन एन्जाइमयुक्त तरल से भरी कई छोटी, गोली-सी पुटिकाएँ होती हैं। इनके फट जाने से इनके एन्जाइम अमीबा के शरीर को पचाकर समाप्त कर सकते हैं। इन्हें इसीलिए कोशिकाओं की आत्मघाती थैलियाँ (suicidal bags) कहते हैं।
- (5) **राइबोसोम्स** (Ribosomes)—ये अंतर्द्रव्यी जालिका की पुटिकाओं पर लगे या छोटे-छोटे स्वतन्त्र समूहों में पाए जाते हैं।
  - (ग) केन्द्रक (Nucleus)

अमीबा के एण्डोप्लाज्म में प्रायः इसके केन्द्रीय भाग में एक, लगभग वृत्ताकार, उभयोत्तल (biconvex) या केवल एक ओर उत्तल, तश्तरीनुमा केन्द्रक होता है। इसके चारों ओर का आवरण, अर्थात् केन्द्रक-कला या कैरिओथीका (karyotheca), अन्य जन्तु-कोशिकाओं की भाँति, दोहरी जीवद्रव्य कला के समान और छिद्रयुक्त होता है। इसके द्रव्य, अर्थात् केन्द्रकद्रव्य (nucleoplasm) में कई केन्द्रिकाएँ (nucleoli) तथा लगभग 500 क्रोमैटिन के कण होते हैं जिन्हें क्रोमीडिया (chromidia) कहते हैं। अमीबा की सारी कार्यिकी (उपापचय, जनन, वंशागित आदि) केन्द्र के ही नियन्त्रण में होती है। अतः यदि अमीबा को युकड़ों में ऐसे कार्टे कि कुछ युकड़ों में केन्द्रक के अंश हों और कुछ में नहीं तो केन्द्रक के अंशों वाले युकड़े तो पुनरुद्भवन द्वारा पूर्ण अमीबी बन जायेंगे, परन्तु अन्य युकड़े नष्ट हो जाएंगे।

उपरोक्त समंकों (organelles) के अतिरिक्त, एण्डोप्लाज्म में **कार्बोनिल डाइयूरिया** (carbonyl diurea) नामक उत्सर्जी पदार्थ के नियमित आकृति के खे (crystals) होते हैं। इन्हें, आकृति के अनुसार, **बाइयूरेट्स** (biurets) या **ट्राइयूरेट्स** (triurets) कहते हैं।

# अमीबा में गमन (LOCOMOTION)

अमीबा में कूट पादों के द्वारा गमन होता है। इसमें अगुली के आकार के पादाभ या कूटपाद या Pseudopodia होते हैं। पादाभ शरीर के किसी भी भाग से तथा किसी भी दिशा में बन सकते हैं तथा इनका आकार एवं परिमाण सदैव परिवर्तित होता रहता है। जब किसी दिशा में नया पादाभ बनता है तो शरीर के अन्य भागों में बने पुराने पादाभ समाप्त होते रहते हैं तथा शरीर का समस्त जीवद्रव्य धीरे-धीरे बने पादाभ में आ जाता है। इस विधि को बार-बार दोहराने पर अमीबा अपने पूर्व स्थान से कुछ आगे बढ़ जाता है। चलन की यह क्रिया अभिलाभ गित कहलाती है। अमीबा की गित लगभग .2-.3 मिमी० प्रति मिनट होती है।

## इसे भी जानें

- अमीबा में गमन कई सिद्धान्तों पर आधारित है।
- आधार से सम्पर्क Contact with Substratum
- श्यानता में रूपान्तरण Conversion of Viscosity
- आसंजन वाद Adhesion Theory
- संकुचन वाद Contraction Theory
- सतह तनाववाद Surface Tension Theory
- लोटन गति वाद Theory of rolling movement.

#### अमीबा में पोषण

अमीबा पूर्ण भोजी अर्थात् जन्तुसममोजी (holozoic or zootrophic) एवं सर्वाहारी होता है अर्थात् ये सभी प्रकार

के ठोस भोजन कणों को ग्रहण कर लेता है। सामान्यतः जीवाणु, डाएटम, अन्य प्रोटोजुआ, शैवाल आदि सूक्ष्म जलीय जीव इसका भोजन होते हैं।

#### अमीबा में प्रजनन

अमीबा में प्रजनन सदैव अलैंगिक (asexual) होता है। इसकी चार विधियाँ बताई जाती है—

- द्विविभाजन
- बीजाणुकजनन
- बह्विभाजन
- प्नरुद्भवन

#### इसे भी जानें

वैज्ञानिकों ने अपने मत के अनुसार कहा है कि अमीबा में संयुग्मन एवं पुनर्जनन का गुण भी होता है। संयुग्मन (Conjugation) : कुछ वैज्ञानिकों का कथन है कि कभी-कभी दो अमीबा कुछ समय के लिये युग्मित होते हैं और फिर अलग होकर स्वतन्त्र जीवन व्यतीत करने लगते हैं। यह माना जाता है कि इससे इनकी कार्य-क्षमता बढ़ जाती है। यद्यपि संयुग्मन के विषय में अभी कोई निश्चित मत नहीं है और इसके महत्व को अभी समझा भी नहीं गया है, किन्तु ऐसा माना जाता है कि इससे अमीबा अपनी खोई शक्ति पुनः प्राप्त कर लेता है।

पुनर्जनन (Regeneration) : अमीबा में अपने नष्ट हुये भागों के पुनः निर्माण की क्षमता होती है। यदि अमीबा को दो या अधिक टुकड़ों में बांट दिया जाये तो प्रत्येक टुकड़ा जिसमें केन्द्रक का थोड़ा-सा भाग भी हो, वृद्धि करके पूर्ण अमीबा बन जाता है।

उपर्युक्त विवरण से स्पष्ट है कि अमीबा भी एक जन्तु है जिसमें जीवधारियों के सभी लक्षण पाये जाते हैं। यह जन्तु जगत के अन्य जटिल जन्तुओं से भिन्न है क्योंकि यह अत्यन्त सरल रचना वाला अकोशिकीय जन्तु है जिसकी एक कोशिका में ही जीवन की समस्त क्रियायें होती हैं और ये सरलतम विधि से पूर्ण की जाती हैं।

# अमीबा का जैविक महत्व (BIOLOGICAL SIGNIFICANCE OF AMOEBA)

- अमीबा एक कोशिका के रूप में पूर्ण जीव की शारीरिक एवं कार्यिक विशेषताओं को प्रदर्शित करता है। अतः
   अमीबा को अगर हम एक कोशिका कहें तो अतिश्योक्ति न होगी।
- अमीबा में द्विखंडन विधि द्वारा जनन समसूत्री विभाजन या माइटोसिस की प्रक्रिया का स्पष्ट चित्रण प्रस्तुत करता
  - 3. अमीबा में उत्तेजनशीलता प्राणियों में संवेदनशीलता के प्रारम्भिक स्वरूप को प्रदर्शित करती है।
  - 4. गुणसूत्रों का बड़ी संख्या में पाया जाना विलगित जीन्स (isolated genes) की उपस्थिति को प्रदर्शित करता है।

अधिक विकसित प्राणियों में ये जीन्स गुणसूत्रों पर विन्यासित होते हैं।

# अमीबा का अमरत्व (IMMORTALITY OF AMOEBA)

अमीबा के समान सरलतम रचना वाले एककोशिकीय जीवों में स्वाभाविक मृत्यु नहीं होती। किसी भी जीव की मृत्यु निम्नवत कारणवश होती है :

- 1. रासायनिक परिवर्तनों के फलस्वरूप बने हुये हानिकारक पदार्थ कोशिका में इकट्ठे होकर उसकी शक्ति को क्षीण करते हैं।
- 2. दैनिक जीवन क्रिया के फलस्वरूप शरीर की कोशिकाओं में टूट-फूट होती रहती है जिसकी पूर्ति पूरी तरह से नहीं हो पाती।
  - 3. प्रतिकूल दशाओं के कारण भी जीव की मृत्यु हो जाती है।

अमीबा एककोशिकीय जीव होने के कारण विदेह (without body) होता है, अतः यह मृत्यु के सभी कारणों पर विजय प्राप्त करने में समर्थ है, क्योंकि :

- रासायनिक परिवर्तनों के फलस्वरूप शरीर में बने हुये हानिकारक पदार्थ इकट्ठे नहीं हो पाते और तुरन्त ही एककोशिकीय शरीर से बाहर निकाल दिये जाते हैं।
- 2. एक ही कोशिका होने से शरीर की टूट-फूट (wear and tear) तुरन्त ठीक हो जाती है जिससे शारीरिक शक्ति क्षीण नहीं हो पाती।
- 3. प्रतिकूल परिस्थितियों में शरीर की रक्षा के लिये इसमें परिकोष्ठन (encystment) पाया जाता है। फलस्वरूप यह नष्ट नहीं हो पाता और अनुकूल परिस्थितियों में पुनः पहले के समान क्रियाशील हो जाता है।
- 4. इसके अतिरिक्त इसमें पुनर्जनन (regeneration) की शक्ति पायी जाती है जिससे यदि किसी कारणवश अमीबा दो या अधिक दुकड़ों में दूट जाता है तो प्रत्येक दुकड़ा एक नये अमीबा का निर्माण करता है। किन्तु यह तभी सम्भव है जबकि प्रत्येक भाग में केन्द्रक का भाग भी उपस्थित हो अन्यथा वह दुकड़ा नष्ट हो जाता है।
- 5. अमीबा में जनन विधि भी अत्यन्त सरल होती है जिससे उसका प्रोटोप्लाज्म नष्ट नहीं होता, परन्तु दो संतित अमीबाओं में पहुंच जाता है जिससे उनके बूढ़े होकर मरने काप्रश्न ही नहीं उठता।

## इसे भी जानें

कुछ परजीवी अमीबा होते हैं जो मनुष्य में रोग उत्पन्न करते हैं—

एंटअमीबा हिस्टोलिटिका

मनुष्य में आंव-खून की पेचिश एक अमीबॉयड प्रोटोजुआ परजीवी एंड अमीबा हिस्टोलिटिका, यह मनुष्य की बड़ी आँत के ऊपरी भाग में पाया जाता है।

#### • एंटअमीबा जिन्जिवालिस

#### (ENTAMOEBA GINGIVALIS)

एंटअमीबा की इस जाति के ट्रोफोर्ज्वॉएट्स कुत्तों, बिल्लियों, घोड़ों, बन्दरों आदि व 50% से भी अधिक मनुष्यों के दातों की जड़ों में मैल तथा फूले मसूड़ों और टॉन्सिल्स (tonsils) की पस थैलियों (pus pockets) में पाये जाते हैं। ये गोल-से और 12 μ से 20 μ व्यास के होते हैं। दांतों के मैल के बैक्टीरिया तथा मसूड़ों की रुधिर कोशिकाओं के श्वेत रुधिराणु (WBCs) इनका भोजन होते हैं।

एक मनुष्य से दूसरे में चुम्बन, आदि के जरिये सीधे पहुँचे जाते हैं। यह एंटअमीबा प्रायः पायरियाग्रस्त लोगों के मुख में अधिक पाया जाता है। सम्भवतः इसके संक्रमण से पायरिया होता है। मसूड़ों का यह रोग कई कारणों से हो सकता है। केवल बैक्टीरिया अथवा एक अन्य प्रोटोजोआ-ट्राइकोमोनास टीनैक्स (Trichomonas tenax) के संक्रमण से भी सम्भवतः पायरिया हो जाता है।

# एंटअमीबा कोलाई (ENTAMOEBA COLI)

इसके ट्रोफोज्वॉएट्स लगभग 50% लोगों की आंत्र के ऊपरी भागों में पाये जाते हैं। इनका व्यास लगभग 20 μ से 40 μ होता है। कोशाद्रव में एक्टोप्लाज्म एवं एंडोप्लाज्म का स्पष्ट भेद नहीं होता। केन्द्रक स्पष्ट होता है। पादाभ प्रायः

एक छोटी, मोटी और कणिकामय रचना के रूप में होता है। खाद्य धानियां संख्या में अधिक होती हैं। कुछ ग्लाइकोजन से भरी धानियां भी होती हैं। ये ट्रोफोज्वॉएट्स आंत्र की दीवार पर आक्रमण करने के बजाय इसकी गुहा में उपस्थित हानिकारक बैक्टीरिया एवं अन्य निरर्थक कणों का भक्षण करके सफाई का काम करते हैं। अतः ये पोषद के लिये लाभदायक होते हैं।



# प्रोटोजोआ एवं परजीविता (PROTOZOA AND PARA-SITISM)

#### परजीविता की परिभाषा (Definition of Parasitism)

यह विभिन्न जातियों के दो जीवों के बीच एक ऐसा स्थाई या क्षणिक संबंध है जिसमें एक जीव (परजीवी : parasite) दूसरे जीव (परपोषी : host) के शरीर पर या शरीर के अन्दर रहकर उसी से अपना पोषण प्राप्त करता है। इस संबंध में परपोषी को कुछ-न-कुछ हानि अवश्य ही पहुँचती है।



ए. एंट अमीबा कोलाई

बी. उसका सिस्ट

#### परजीवियों के भेद (Kinds of Parasites)

परजीवी निम्नलिखित प्रकार के होते हैं :

- 1. बाह्यपरजीवी (Ectoparasites) : ये परपोषी के शरीर के बाहर रहते हैं।
- 2. अन्तः परजीवी (Endoparasites) : ये परपोषी के शरीर के भीतर कोशिकाओं, ऊतकों या गुहाओं में रहते हैं और इसी के आधार पर इन्हें कोशिकीय (cytozoic), ऊतकीय (histozoic) या गुहीय (coelozoic) अंतः परजीवी कहते हैं।

## सूक्ष्म जीव दोस्त या दुश्मन

अभी तक हम लोगों ने सूक्ष्म जीवों के अन्तर्गत वाइरस, जीवाणु एवं प्रोटोजुआ (युग्लीना, पैरामीशियम एवं अमीबा) के बारे में जानकारी प्राप्त करी। इनकी जानकारी प्राप्त करने के उपरान्त यह निष्कर्ष निकलता है कि सूक्ष्म जीव जीव जन्तुओं के लिए दोस्त एवं दुश्मन दोनों है।

पूर्व में सूक्ष्म जीवों से होने वाली बीमारियों एवं उनकी उपयोगिता का वर्णन किया जा चुका है। इसके अतिरिक्त भी कुछ सूक्ष्मजीव हैं जिनसे अन्य बीमारियाँ होती है जो अधोलिखित हैं—

#### सूक्ष्म जीव-दुश्मन

| <del></del> क्र.सं. | कारक      | होने वाली बीमारियों के नाम |                           |
|---------------------|-----------|----------------------------|---------------------------|
| 1.                  | वाइरॉयड्स | पोटैटो स्पन्डिल टयूबर      | आलू में, तम्बाकु, नारियल, |
|                     | VIROIDS   | डिजीज                      | कुकुम्बर, साइट्स के       |
|                     | 316       | /                          | पौधों में संक्रमण।        |
| 2.                  | प्रिओन्स  | स्क्रैपी रोग               | भेड़                      |
|                     | No.       | कुरु रोग                   | मनुष्य                    |
|                     |           | पागलपन का रोग (mod cow     | गाय                       |
|                     |           | disease)                   | मनुष्यों में              |
|                     |           | डीमेन्शिया                 |                           |
|                     |           | पार्किन्सन रोग             |                           |
| 3.                  | वाइरस     | HIV, AIDS                  | मनुष्यों में              |
| 4.                  | जीवाणु    | जीवाणु द्वारा फैलने वाले   |                           |
|                     |           | रोग पूर्व में ही इसकी      |                           |
|                     |           | चर्चा की जा चुकी है।       |                           |

## सूक्ष्मजीव का आर्थिक महत्व

- वाइरस का बैक्टीरिओफेज दोस्त है क्योंकि यह गंगा नदी में पाया जाता है जो नदी के जल में जीवाणु होते
   हैं उसमें बैक्टीरियोफेज आक्रमण करके जीवाणुओं को नष्ट कर देता है और गंगा जल दूषित (सड़ता) नहीं होता है।
- 2. जीवाणुओं के अधिक महत्व का वर्णन पूर्व में किया जा चुका है उदाहरण स्वरूप दूध से दही का बनना, गन्ने के रस से सिरका बनना, भरे हुए जन्तुओं से चमड़ा बनाना, और विश्व में यही जीवाणु न हो तो पूरा विश्व मृत जीव जन्तुओं से भर जायेगा क्योंकि जीवाणु ही अपघटनकर्ता का कार्य करते हैं। जिससे भूमि की उर्वरता बढ़ती है।

## भोज्य पदार्थों का परिरक्षण

हमारे जीवन में भोज्य पदार्थों के परिरक्षण का बहुत महत्व है क्योंकि सन्तुलित आहार में फल एवं सब्जियों का विशेष महत्व है इन्हें रक्षात्मक आहार की संज्ञा दी जाती है। फलों तथा सब्जियों में जल की अधिक मात्रा होने के कारण इन्हें ताजा रूप में अधिक दिनों तक नहीं रखा जा सकता है अतः इनका परिरक्षण करना आवश्यक है जिससे जब मौसम न हो तो इनका उपभोग किया जा सकता है और मौसम होने पर इनकी कीमत भी कम हो जाती है जिससे अधिक से अधिक सस्ते कीमत पर इनका परिरक्षण किया जा सकता है।

फल एवं सब्जियों में विटामिन, प्रोटीन एवं खनिज पदार्थ प्रचुर मात्रा में होने के कारण मानव शरीर की रोगों से रक्षा करते हैं। अनुकूल मौसम में फल एवं सब्जियों की मात्रा अचानक बढ़ जाती है और उनकी कीमत कम हो जाती है। यदि फलों की कुछ मात्रा की संरक्षित कर लिया जाये तो इनकी बढ़ती हुई कीमत को नियन्त्रित किया जा सकता है।

#### क्रिया विधि:

प्रशिक्षक प्रशिक्षार्थी से निम्नलिखित प्रश्न करें—

बाजार में कुछ दुकानों पर आपने आँवले का मुरब्बा तथा आम, पपीता, गाजर का अचार शीशी में बिकते देखा होगा। क्या कारण है ये सामान सड़ता नहीं है?

- आम छील कर काट कर सुखा लिया जाता है क्यों?
- किशमिश, छुआरा किस फल से तैयार किया जाता है
- 🎍 जैम, जैली किससे बनती है व वह लम्बे समय तक ये कैसे सुरक्षित रहती हैं?

उक्त सभी वस्तुएं विशेष विधियों द्वारा बनाई जाती हैं? फल-सिब्जियाँ जल्दी ही सड़ने लगती है। इससे भारी क्षिति होती है। इस क्षिति से बचने हेतु परिरक्षण एक कारगर उपाय है। ठीक ढंग से परिरक्षण न होने के कारण बैक्टीरिया, फर्फूद आदि फल तथा सिब्जियों को खराब करते हैं।

फलों एवं सब्जियों को खराब होने से बचाने हेतु अथवा उनकी गुणवत्ता अधिक समय तक बनाये रखने के लिए की जाने वाली क्रियाओं को फल परिरक्षण कहते हैं।

81

# फल परिरक्षण का वर्गीकरण

यह दो प्रकार के होते हैं-

- 1. अस्थायी परिरक्षण2. स्थायी परिरक्षण
- 1. अस्थायी परिरक्षण—इस विधि से फलों तथा सिब्जियों को हम थोड़े समय तक ही सुरक्षित रख सकते हैं। अस्थायी परिरक्षण के विभिन्न तरीके हैं।
- (क) जीवाणु रहित करना—इसे स्वच्छता का सिद्धान्त भी कहते हैं। खाद्य पदार्थों का खराब होना उनमें उपस्थित जीवाणुओं की संख्या पर निर्भर करता है। फलों-सिब्जियों को जब गन्दी टोकिरियों में रखा जाता है या उनहें तोड़ते समय असावधानी के कारण चोट आ जाती है, टूट-फूट हो जाती है तो जीवाणुओं को अनुकूल वातावरण मिल जाता है। इसिलए फलों को तोड़ते समय तथा परिवहन में सावधानी बरतनी चाहिए जिससे फलों में चोट न लगे।
- (ख) नमी से दूर रखना—नमी में सूक्ष्म जीवों की उत्पत्ति तथा वृद्धि तेजी से होती है। यही कारण है कि बरसात में अचार एवं मुख्बा पर शीघ्र फफूँदी लग जाती है। खाद्य पदार्थों को नमी से दूर रखना ही बचाव का अच्छा उपाय है।
- (ग) ठण्डे स्थान पर रखना—ऐसा देखा जाता है कि खाद्य पदार्थ गर्मी की अपेक्षा ठंडे मौसम में अधिक समय तक सुरक्षित रखे जा सकते हैं। कारण है कि जीवाणु अधिक तापमान पर अधिक क्रियाशील होते हैं। इसलिए खाद्य पदार्थों को रेफ्रिजरेटर में रखकर कुछ समय तक सुरक्षित रखा जाता है। रेफ्रिजरेटर का तापमान 4° से 10°c होता है।
- (घ) वायु से दूर रखना—वायु जीवाणुओं के वृद्धि में सहायक होती है। खाद्य पदार्थों को वायु से दूर रख कर खराब होने से बचाया जा सकता है। इसी सिद्धान्त पर डिब्बा बन्दी (कैनिंग) में हवा को डिब्बों से निकाल कर फलों तथा सिब्जियों को सुरक्षित रखा जाता है।
- 2. स्थायी परिरक्षण—इस विधि से फल तथा सिब्जियों एवं इनसे बने खाद्य पदार्थों को अधिक समय तक सुरिक्षत रखा जा सकता है। इसकी निम्नलिखित विधियाँ हैं—
- (क) ऊष्मा द्वारा परिरक्षण—इस विधि में खाद्य पदार्थों में विद्यमान जीवाणुओं को ऊष्मा द्वारा नष्ट कर दिया जाता है। इसके लिए सामान्यतः 65° सेल्सियस ऊष्मा पर खाद्य पदार्थों को गर्म करने के पश्चात् रखा जाता है।
- (ख) नमक द्वारा परिरक्षण—10 से 15 प्रतिशत नमक का घोल खाद्य पदार्थों को खराब करने वाले जीवाणुओं के लिए विष का काम करता है। इसलिए अचार को सुरक्षित रखने हेतू नमक का प्रयोग किया जाता है।
- (ग) चीनी द्वारा परिरक्षण—खाद्य पदार्थों में 66 प्रतिशत से अधिक चीनी की मात्रा रखने से उनका परिरक्षण स्थायी रूप से हो जाता है चीनी की इस सान्द्रता पर जीवाणु तथा एन्जाइम निष्क्रिय हो जाते हैं। जैम, जेली, मुख्बा का परिरक्षण इसी आधार पर किया जाता है।
  - (घ) रसायनों द्वारा परिरक्षण—तरल तथा पेय पदार्थों को परिरक्षित करने में पोटैशियम मेटा बाई सल्फाइट तथा

सोडियम बेन्जोएट जैसे विभिन्न रसायनों का प्रयोग किया जाता है। ये रसायन एक निर्धारित सीमा तक मनुष्य के लिए हानिकारक नहीं होते हैं किन्तु जीवाणुओं के लिए विष का काम करते हैं।

(ङ) सुखाना—नमी की अनुपस्थिति में जीवाणु अपनी वृद्धि नहीं कर पाते हैं। खाद्य पदार्थों को धूप में या बिजली के उपकरणों द्वारा सुखा कर परिरक्षित किया जाता है। सुखाने से घुलनशील ठोस पदार्थ गाढ़े रूप में आ जाते हैं।

मुख्य फसलों का परिरक्षण—मुख्य फसलों से बने खाद्य पदार्थों का विवरण निम्नलिखित हैं—

- 1. आम—पेय पदार्थ, अचार, मैंगो केक, अमचूर आदि।
- 2. अमरूद—जेली, शर्बत, टाफी आदि।
- 3. आँवला—मुख्बा, जूस, लड्ड, टाफी, अचार आदि।
- 4. नींबू वर्गीय फल-शर्बत, कार्डियल, पानक, अचार आदि।
- 5. सेब-जैम, शर्बत, डिब्बा बन्दी आदि।
- 6. अंगूर—पेय पदार्थ, किशमिश आदि।

## फल तथा फल पदार्थ खराब होने के कारण

रोटी, अचार, मुरब्बा में कुछ दिन बाद या वर्षा ऋतु में रूई के फाहे जैसी सफेद, भूरी, नीली, काले रंग की संरचना दिखाई देती है जिसके कारण इसका स्वाद खराब हो जाता है। यदि हमें इनके खराब होने के कारण के बारे में जानकारी हो जाय तो इससे बचाव किया जा सकता है। फल तथा फल से बने उत्पाद के खराब होने के मुख्य कारक हैं—कवक या फफूँद, खमीर, जीवाणु (बैक्टीरिया) एवं एन्जाइम।

कवक या फफूँद—फल, सब्जी, डबलरोटी, मुरब्बा, अचार आदि में वर्षा के दिनों में काले रंग के धब्बे दिखाई देते हैं। इसके अलावा सफेद भूरे रूई के फाहे जैसी संरचना देखने में आती है। इसी को 'कवक' के नाम से जानते हैं। ये कवक फल तथा इनसे बने उत्पाद को खराब कर देते हैं। इससे फल तथा फल पदार्थों का रंग भी बदल जाता है। फफूँद के बीजाणु हवा में फैले रहते हैं जिससे हर खाद्य पदार्थ पर यह आसानी



से पहुँच जाता है। यदि किसी पदार्थ के थोड़े से हिस्से में फफूँद लग गया हो तो उसे निकाल कर ठीक किया जा सकता है। लेकिन फफूँद का पूरा प्रभाव हो जाने पर फल तथा फल पदार्थ पूर्णतया नष्ट हो जाते हैं। अचार, मुख्बा, को कभी-कभी धूप में रखने से बचाव किया जा सकता है। यदि निर्मित पदार्थ को 30 मिनट तक 71°C ताप पर गर्म किया जाय तो इन्हें नष्ट किया जा सकता है।

खमीर (Yeast) यह भी फफूँद की श्रेणी में आता है जो एक कोशिका वाला सूक्ष्म जीव है। इसकी कोशिकायें अण्डाकार या गोलाकार होती हैं। खमीर के कारण फल एवं खाद्य पदार्थों का स्वाद तथा रंग बदल जाता है। खमीर मीठी चीजों पर बड़ी आसानी से लग जाती है लेकिन जिन चीजों में चीनी की मात्रा 68 प्रतिशत से अधिक होती है उनमें खमीर का प्रभाव नहीं होता है। खमीर की वृद्धि के लिए ऑक्सीजन तथा जल आवश्यक है। खमीर को आधे घण्टे तक 71.4°c पर गर्म करके नष्ट किया जा सकता है। इसका प्रभाव पेय पदार्थों पर अधिक होता है।

एन्जाइम (Enzymes) द्वारा—फलों तथा उनसे निर्मित पदार्थों के खराब होने में एन्जाइम की अहम् भूमिका होती हैं। एन्जाइम जिटल रचना वाले जैविक उत्प्रेरक होते हैं और प्रत्येक जीवित वस्तु में उपस्थित रहते हैं। फलों में रंग परिवर्तन एन्जाइम के कारण ही होता है। यदि आम के फलों को तोड़कर कुछ समय के लिए रख दिया जाय तो वे पक जाते हैं। उनका रंग गहरा पीला तथा भूरा पड़ जाता है। यदि आप सेब को चाकू से काटकर थोड़ी देर रख दें तो उसका रंग भूरा पड़ जाता है। ऐसा एन्जाइम के कारण होता है। एन्जाइम के इस रंग परिवर्तन की क्रिया के साथ-साथ ही



चित्र : ईस्ट (खमीर)

फल तथा फल पदार्थों के स्वाद एवं सुगन्ध आदि में भी अन्तर आ जाता है और धीरे-धीरे ये नष्ट होने लगते हैं। यदि इन्हें 70°-80° से. पर 20-30 मिनट तक रखा जाय तो एन्जाइम निष्क्रिय हो जाते हैं।

बैक्टीरिया (Bacteria) द्वारा—बैक्टीरिया एक कोशिका वाले अत्यन्त छोटे जीव होते हैं जिन्हें केवल सूक्ष्मदर्शी द्वारा देखा जा सकता है। इनका जनन बहुत तेजी से कोशिका विभाजन के द्वारा होता है। ये कई आकार के होते हैं। अधिकांश जीवाणु क्लोरोफिल रहित होते हैं। अतः इन्हें अपना जीवन-यापन अन्य पदार्थों पर करना पड़ता है। यही कारण है कि फल तथा फल पदार्थों पर इन जीवाणुओं का आक्रमण हो जाने के कुछ समय बाद वे सड़ने लगते हैं। अधिकांश जीवाणुओं को 100° से. ताप पर अम्लीय माध्यम में 30 मिनट तक गर्म करके



चित्र बैक्टीरिय

नष्ट किया जा सकता है। ठण्डक से जीवाणु नष्ट नहीं होते बल्कि इससे उनकी बढ़ोत्तरी में रुकावट हो जाती है। बर्फ में जमाये गये पदार्थों में भी जीवाणु मौजूद रहते हैं लेकिन ये प्रसुप्ता अवस्था में रहते हैं जिसके फलस्वरूप फल पदार्थ खराब नहीं होते।

बोतल तथा डिब्बों को जीवाणु रहित करना तथा उन्हें मुँह बन्द करना—फल तथा उनसे निर्मित पदार्थों को खराब होने से बचाने के लिए इन्हें बोतल एवं डिब्बों में बन्द करके रखा जाता है। इन फल एवं फल पदार्थों को बोतल एवं डिब्बों में रखने से पूर्व इन्हें जीवाणु रहित करना अनिवार्य है। इनमें निम्नलिखित क्रियायें की जाती हैं—

1. निर्जीवीकरण—डिब्बों तथा फलों को उबलते हुए पानी में 10 मिनट तक गर्म किया जाता है। इससे इनके अन्दर तथा बाहर के जीवाणु नष्ट हो जाते हैं।

2. बोतल तथा डिब्बों को बायु रहित करना—डिब्बों तथा बोतलों को बन्द करने से पहले उन्हें वायु रिहत करना आवश्यक है। वायु रिहत करने के लिए उन्हें गर्म पानी के भगौने में इस प्रकार रखते हैं कि इनका चौथाई भाग गर्म पानी में डूबा रहे। इस गर्म पानी में इसको इतना गर्म करते हैं कि इनके बीच का तापक्रम 80°-85° से. हो जाय। यह तापक्रम खौलते पानी में लगभग 10 मिनट में आ जाता है। वायु रिहत कर लेने के बाद डिब्बों तथा बोतलों को तुरन्त मशीन द्वारा बन्द कर देना चाहिए। इस बात का ध्यान रखना चाहिए कि बन्द करते समय डिब्बे का तापक्रम कम से कम 70° से. होना चाहिए।

## इसे भी जानें

- 1. पोटैशियम मेटाबाईसल्फ़ाइट
- 2. सोडियम बेन्जोएट
- सोडियम मेटाबाईसल्फेट
- 1. पोटैशियम मेटाबाईसल्फाइट—इसको संक्षेप में (के एम एस) के नाम से जाना जाता है। यह एक खेदार गन्धक लवण है। यह अम्लीय और क्षारीय माध्यम से प्रभावित नहीं होता है। फलों के रस में उपस्थित सिट्रिक अम्ल के प्रभाव से पोटैशियम मेटाबाईसल्फाइट, सल्फर डाईऑक्साइड और पोटैशियम साइट्रेट के रूप में परिवर्तित हो जाता है। सल्फर डाई ऑक्साइड पानी से मिलकर सल्फ्यूरिक अम्ल बनाती है जो परिरक्षक का कार्य करती है।
- 2. **सोडियम बेन्जोएट**—सोडियम बेन्जोएट एक स्वाद और गन्ध रहित चूर्ण होता है। इसकी परिरक्षण क्षमता इसमें उपस्थित बेन्जोइक अम्ल के कारण होती है।

सोडियम बेन्जोएट की जल में घुलनशीलता, बेन्जोइक अम्ल की अपेक्षा कई गुना अधिक होती है इसिलए सोडियम बेन्जोएट का प्रयोग अधिक किया जाता है। यह मुख्यतः फफूँद और खमीर की वृद्धि को रोकता है। बेन्जोइक अम्ल सूक्ष्म जीवों की श्वसन क्रिया पर प्रभाव डालती है जिसके परिणाम स्वरूप ग्लूकोस का ऑक्सीकरण रुक जाता है। बेन्जोइक अम्ल के फलस्वरूप सूक्ष्म जीवों में ऑक्सीजन का उपयोग अधिक हो जाता है। सोडियम बेन्जोएट फलों के रस की ऊपरी सतह पर होने वाली खराबियों को रोकने में सक्षम होता है।

3. सोडियम मेटाबाईसल्फेट—यह खेदार होता है एवं इसके खे छोटे होते हैं। 10 किया शर्बत में इसकी 5 ग्राम मात्रा मिलायी जाती है। पोटैशियम मेटाबाईसल्फाइट की तरह ही इसका प्रयोग रंगीन शर्बतों में नहीं करते हैं क्योंकि यह शर्बत को रंगहीन कर देता है। इस परिस्क्षक का प्रयोग प्रायः कम किया जाता है।

### मूल्यांकन के प्रश्न

#### दीर्घ उत्तरीय प्रश्न

- 1. अमीबा के बारे में चित्र सहित वर्णन कीजिये।
- 2. वाइरस निर्जीव व जीव के बीच की कड़ी है अपने विचार दीजिये।

- 3. रोगाणुजनक सूक्ष्म जीवों से बचने के लिए कौन-कौन से उपाय आवश्यक है? लिखिये।
- सूक्ष्म जीवों का हमारे जीवन में महत्व पर चर्चा करिये।
- 5. जीवाणु के अधिक महत्व पर एक निबन्ध लिखिए।
- पौधों में जीवाणुओं, विषाणुओं तथा कवकों से होने वाले दो दी पादप रोगों के नाम लिखिये तथा उनके लक्षण बताइये।
- 7. परिरक्षण की आवश्यकता क्यों पड़ती है? परिरक्षण के लिए कौन-कौन सी रासायनिक पदार्थों का प्रयोग करते हैं?
- 8. खाद्य परिरक्षण के कितने प्रकार हैं। संक्षेप में लिखें?

#### अति लघुउत्तरीय प्रश्न

- 1. जीवाणु की खोज करने वाले वैज्ञानिक नाम बताइये।
- जीवाणु से मिलने वाली दो एण्टीबायटिक का नाम बताइए।
- 3. किसी एक मृतोपजीवी जीवाणु का नाम बताइये।
- 4. एच.आई.वी. का पूरा नाम लिखिये।
- 5. "सूक्ष्म जीवों के छिपे संसार" की खोज सर्वप्रथम किसने की थी।
- वाइरल रोग किन जीवधारियों में होता है नाम लिखिये।

#### लघु उत्तरीय प्रश्न

- 1. वाइरस के विशिष्ट जैविक गुणों का वर्णन कीजिये।
- 2. सिद्ध कीजिये कि वाइरस सजीव व निर्जीव के बीच की कड़ी है।
- वाइरॉइडस क्या हैं?
- 4. संघ प्रोटोजुआ को कोई दो लक्षण लिखिये।
- एंटअमीबा कोलाई कहां पाया जाता है?
- अमीबा की खोज करने वाले वैज्ञानिक का नाम लिखिये।
- 7. खाद्य परिरक्षण क्यों आवश्यक है?

## बहुविकल्पीय प्रश्न

- 1. प्रोटिस्टा अपना भोजन किस रूप में प्राप्त करते हैं?
  - (a) कीमोसिन्थेसिस

(b) फोटोसिन्थेसिस

(c) होलाट्रायिक

(d) फोटोसिन्थेसिस, कीमोसिन्थेसिस, होलोट्रापिक

एण्टअमीबा हिस्टालिटिका कहाँ रहता है?

86

|    | (a) मनुष्य के कोलन में                      | (b) मनुष्य की गुहा में                           |  |  |
|----|---------------------------------------------|--------------------------------------------------|--|--|
|    | (c) मनुष्य के आमाशय में                     | (d) मनुष्य की मुख्य गुहिका में                   |  |  |
| 3. | अमीबिएसिस से बचाव के लिए क्या करना          | बएसिस से बचाव के लिए क्या करना चाहिये?           |  |  |
|    | (a) अधिक फल खाने चाहिये                     | (b) मच्छरदानी लगानी चाहिये                       |  |  |
|    | (c) अधिक भोजन खाना चाहिये                   | (d) उबला हुआ पानी पीना चाहिये                    |  |  |
| 4. | पायरिया रोग का कारण है–                     |                                                  |  |  |
|    | (a) एण्टअमीबा हिस्टालिटिका                  | (b) ट्राइकोमोनोस बकैलिस                          |  |  |
|    | (c) ट्रिपनोसोमा गैम्बीएन्स                  | (d) एण्टअमीबा जिन्जेवेलिस                        |  |  |
| 5. | टी.एम.वी. में होता है–                      |                                                  |  |  |
|    | (a) DNA                                     | (b) RNA + Protein                                |  |  |
|    | (c) DNA + RNA                               | (d) DNA + Protein                                |  |  |
| 6. | पेय पदार्थों को परिरक्षित करने में कौन सा र | सायन प्रयोग में लाया जाता है।                    |  |  |
|    | (a) सोडियम मेटा बाई सल्फाइट                 | (b) पोटेशियम मेटाबाई सल्फाइट तथा सोडियम बेन्जोएट |  |  |
|    | (c) नमक का घोल                              | (d) सोडियम मेटा बाई सल्फाइट एवं सोडियम बेन्जोएट  |  |  |
|    |                                             | •                                                |  |  |

- (a) 55° सेल्सियस (c) 40° सेल्सियस
- (b) 65° सेल्सियस

(d) 100° सेल्सियस

# इकाई - 5 प्राकृतिक सम्पदा का संरक्षण एवं ब्रह्माण्ड जीवों का विलुप्तीकरण

इस इकाई के अध्ययन से निम्नांकित बिन्दुओं के बारे में जानकारी प्राप्त होगी—

- प्राकृतिक सम्पदा का संरक्षण
- प्राकृतिक सम्पदा जीवित रहने के लिए
- प्राकृतिक सम्पदा ऊर्जा का खजाना
- विभिन्न प्रकार की प्राकृतिक सम्पदायें
- जंगल एवं जंगल के जीवधारी महत्त्वपूर्ण सम्पदाएँ
- प्राकृतिक सम्पदा का अपव्यय मानव जाति के उत्तर जीविता के लिए खतरनाक
- पारिस्थितिक संतुलन को बनाये रखने के लिए प्राकृतिक सम्पदाओं का प्रयोग आवश्यक
- कुछ प्राकृतिक सम्पदाओं की सुरक्षा एवं संरक्षण आवश्यक
- संरक्षण के लिए व्यक्तिगत, सामृहिक तथा अन्तर्राष्ट्रीय प्रयासों की आवश्यकता
- ब्रह्माण्ड जीवों का विलुप्तीकरण
- लुप्त होता वन्य जीव
- जातियों की विलुप्तता के कारण
- विलुप्त हो रहे जीवों का वर्गीकरण
- वन्य जीवन संरक्षण की विधियाँ
- वन्य जीवन संस्थाएँ

प्राकृतिक संसाधन हमारे अतीत की धरोहर तथा राष्ट्र की बहुमूल्य सम्पदा है। हम सभी का धर्म भी बनता है कि इसका उपयोग यथाउचित ही करें। आइये प्राकृतिक सम्पदा का संरक्षण विषय प्रकरण को निम्नांकित तरीके से समझने का प्रयास करते हैं।

## • प्राकृतिक सम्पदा जीवित रहने के लिए आवश्यक है?

हमारी धरती सभी प्राकृतिक सम्पदाओं से भरपूर है। प्राकृतिक सम्पदा है क्या? ''ऐसे सभी पदार्थ जो हमें प्रकृति से प्राप्त होते हैं, **प्राकृतिक सम्पदा** कहलाते हैं।'' जैसे-प्रकृति में विद्यमान वायु, जल, मिट्टी, पेड़-पौधे, जन्तु, नदी, पहाड़, सूर्य आदि सभी प्राकृतिक सम्पदाएँ हैं। यही नहीं विभिन्न प्रकार के खनिज पदार्थ, पेट्रोल, तेल, कोयला भी प्राकृतिक सम्पदाएँ हैं। जीवों को जीवित रहने के लिए कौन-कौन सी चीजें आवश्यक होती हैं? भोजन, वायु और जल। ये पदार्थ प्रकृति में उपलब्ध हैं। प्रकृति के सभी जीव-जन्तु इस सम्पदा का उपयोग

करते हुए अपना जीवन-यापन करते हैं। मनुष्य द्वारा निर्मित वस्तुएँ भी किसी न किसी रूप में प्रकृति के ही माध्यम से प्राप्त हैं। स्पष्ट है कि जीवधारी अपनी सारी आवश्यकताओं की पूर्ति प्रकृति से करते हैं। अतः स्पष्ट है कि प्रत्येक जीव-जन्तु प्राकृतिक सम्पदा पर निर्भर हैं।

#### • प्राकृतिक सम्पदा ऊर्जा का खजाना है :-

सजीवों का शरीर कभी निष्क्रिय नहीं रहता है। उनके शरीर में सदैव विभिन्न प्रक्रियायें होती रहती हैं। इन प्रक्रियाओं को सुचारु रूप से चलाने के लिए ऊर्जा की आवश्यकता होती है। क्या आप जानते हैं कि यह ऊर्जा कहाँ से प्राप्त होती है? प्रकृति के माध्यम से प्राप्त कोयला, लकड़ी, डीजल, पेट्रोल, मिट्टी का तेल आदि के जलने से ऊर्जा प्राप्त होती है। जिसका उपयोग विभिन्न कार्यों जैसे भोजन पकाने, गाड़ी तथा इंजन आदि चलाने के लिए होता है। किन्तु जीव-जगत को मिलने वाली ऊर्जा का आदि स्रोत सूर्य है, जिसकी ऊर्जा को सौर ऊर्जा कहते हैं।

पृथ्वी पर प्रत्येक जीव प्रत्यक्ष या अप्रत्यक्ष रूप से सूर्य की ऊर्जा का उपयोग करता है। ऑक्सीजन का नवीकरण, प्रकाश संश्लेषण, पौधे तथा जन्तु उत्पाद, जल-चक्र यहाँ तक कि कोयले का निर्माण तथा खनिज तेल भी सूर्य की ऊर्जा के ही परिणाम हैं।

प्रशिक्षुओं से पूछा जाय कि विभिन्न प्रकार की सम्पदाएँ कितने प्रकार की हो सकती हैं?

• विभिन्न प्रकार की प्राकृतिक सम्पदाएँ :-

प्रकृति द्वारा उपलब्ध असीमित पदार्थों का भण्डार मोटे तौर पर दो भागों में बाँटा जा सकता है-

(i) पुनः प्राप्त होने वाली सम्पदाएँ। (ii) पुनः प्राप्त न होने वाली सम्पदाएँ।

## (i) पुनः प्राप्त होने वाली सम्पदाएँ :-

वे पदार्थ जो मनुष्य अथवा जीवों द्वारा प्रयुक्त तो होते हैं, परन्तु किसी न किसी रूप में प्रकृति में पुनः लौट आते हैं, इन्हें पुनः प्राप्त होने वाली सम्पदाएँ अथवा नवीकरणीय सम्पदाएँ कहते हैं। जैसे-हवा, पानी, मृदा (मिट्टी), पौधे तथा जन्तु।

उदाहरण के लिए हवा में उपस्थित ऑक्सीजन की पुनः पूर्ति प्रकाश संश्लेषण द्वारा होती रहती है, तथा शुद्ध जल का नवीकरण जल-चक्र द्वारा पूरा होता रहता है।

# (ii) पुनः प्राप्त न होने वाली सम्पदाएँ

प्रकृति में कुछ ऐसे भी पदार्थ हैं जो एक बार उपयोग होने के पश्चात् समाप्त हो जाते हैं, उन्हें पुनः प्राप्त न होने वाली सम्पदाएँ अथवा अनवीकरणीय सम्पदाएं कहते हैं। जैसे-कोयला, पेट्रोल, प्राकृतिक गैस, खिनज लवण आदि।





चित्र : प्रकृति में जल चक्र

#### नवीकरणीय सम्पदाएँ जैसे पानी, जंगलात भी समाप्त हो सकते हैं-

प्रत्येक नवीकरणीय सम्पदा स्वयं के नवीनीकरण हेतु एक निश्चित प्राकृतिक चक्र पर निर्भर करती है, और इस कार्य को करने के लिए प्राकृतिक चक्र की एक सीमित क्षमता होती है, अतः प्रत्येक नवीकरणीय सम्पदा की सीमाएँ हैं। यदि हम इनका अनियंत्रित उपयोग करेंगे तो नवीकरणीय सम्पदाएँ जैसे पानी, जंगल भी समाप्त हो सकते हैं।

आइये इसे भली-भाँति समझने के लिए हम भूमिगत जल का उदाहरण लेते हैं। पृथ्वी का जल सूर्य की गर्मी से वाष्पीकृत होकर बादल बनता है, तथा वहाँ से वर्षा द्वारा पुनः पृथ्वी पर गिरता या लौटता है। अधिकांश जल बहकर तालाब, निदयों तथा समुद्र में पहुँचता है, और कुछ जल रिसकर भूमि के अन्दर चला जाता है। यही भूमिगत जल कुओं, हैण्ड पम्पों के माध्यम से हमें पेय जल के रूप में मिलता है। यह क्रिया प्रकृति में बार-बार होती है इसे जल-चक्र कहते हैं। इस प्रकार प्रकृति में जल चक्र चलता रहता है और जल पुनः प्राप्त होता रहता है।

परन्तु भूमिगत जल जो एक समय प्रचुर मात्रा में पाया जाता था, अधिकांश क्षेत्रों में उसमें कमी आ गयी है और जल-स्तर नीचे गिरता जा रहा है, क्या आप जानते हैं कि इसका क्या कारण है? इसका कारण है कि तीव्र दर से हम जल को भूमि से निकाल रहे हैं, जबकि बदले में भूमि में जल वापस पहुँचने की दर कम है।

इसी प्रकार पौधे तथा जन्तु अपनी संख्या की वृद्धि, प्रजनन तथा प्राकृतिक चक्रों द्वारा बनाये रखते हैं। परन्तु मानव द्वारा अत्यधिक वृक्षों के काटने के कारण जंगल समाप्त होते जा रहे हैं। अतः स्पष्ट है कि अनियंत्रित उपयोग से नवीकरणीय सम्पदायें समाप्त हो सकती हैं।

लगातार उपयोग करने से नवीकरणीय सम्पदाएँ भी समाप्त हो सकती हैं। विचारणीय बिन्दु इन साधनों की खपत के साथ-साथ प्रकृति में इसकी वापसी भी आवश्यक है।

## जंगल एवं जंगल के जीवधारी महत्वपूर्ण सम्पदाएँ हैं :-

प्राकृतिक सम्पदाओं में वन एक महत्वपूर्ण सम्पदा है। ये वायु को शुद्ध करते हैं, वर्षा के जल के व्यर्थ बहने की दर को घटाते हैं, बाढ़ को नियन्त्रित करते हैं, मृदा अपरदन को रोककर उसकी उर्वरा शक्ति बनाये रखते हैं। अनेक उपयोगी जन्तु वनों में निवास करते हैं। वन्य जीव न केवल वन क्षेत्र में आश्रय पाते हैं, बिल्क अपने भोजन, प्रजनन तथा संरक्षण के लिए भी इन्हीं क्षेत्रों पर आश्रित रहते हैं। ये जीवधारी प्रकृति में सन्तुलन बनाये रखने में महत्वपूर्ण भूमिका निभाते हैं।

जंगलों के समाप्त होने तथा पौधे एवं जन्तु के जीवन के खतरे से जाति (स्पीशीज) लुप्त हो जाती है:-

मनुष्य अपने स्वार्थ के लिये वृक्षों को काट रहा है। इस तरह जंगलों के कट जाने से क्या हो रहा है?



चित्र : वन्य जन्तुओं की कुछ संकटग्रस्त जातियाँ

जंगलों के कटने से पेड़-पौधे तो समाप्त हो ही रहे हैं, साथ ही इनमें रहने वाले जन्तुओं का जीवन भी खतरे में पड़ चुका है। परिणामस्वरूप पौधों तथा जन्तुओं के समुदाय विलुप्त होने लगे हैं। क्या आप जानते हैं कि चीता, सिक्किम का बारहसिंहा तथा गुलाबी सिर वाली बतखें वन्य प्राणियों के वे उदाहरण हैं, जो कि कुछ समय पूर्व ही भारत से विलुप्त हुए हैं। बाघ, शेर,गैंडा, भालू, कस्तूरी मृग, हिरन आदि भी धीरे-धीरे कम होते जा रहे हैं।

# जंगलों की समाप्ति से तथा पौधे एवं जंतु के जीवन के खतरे से कालान्तर में जातियाँ लुप्त हो जाती हैं।

• शिक्षार्थियों से पूछा जाय कि सम्पदाओं की कमी और उसके कारण क्या हो सकते हैं? परिचर्चा करने से जो परिणाम प्राप्त होते हैं वे इस प्रकार से होते हैं—

## 1. बढ्ती जनसंख्या :-

निरन्तर बढ़ती हुई जनसंख्या की आवश्यकताओं की पूर्ति हेतु सम्पदाओं के उपयोग के लिए अत्यधिक दबाव पड़ता है। उदाहरण के लिए जनसंख्या बढ़ने के कारण रहने के लिए स्थान एवं भोजन की कमी हो गयी है। भोजन एवं स्थान की खोज में मनुष्य जंगल एवं पहाड़ों की ओर बढ़ रहा है। कृषि योग्य भूमि तथा चारागाह के लिए वह जंगलों का विनाश कर रहा है। भोजन के लिए जन्तुओं का शिकार कर उन्हें समाप्त कर रहा है, जिससे ये सम्पदायें तो कम होती ही जा रही हैं, प्रकृति में सन्तुलन भी बिगड़ रहा है।

- प्राकृतिक सम्पदा के क्षय होने से प्राकृतिक सन्तुलन बिगड़ जाता है।
- बाढ़ आना, सूखा पड़ना, भूकम्प आना तथा कुछ प्राणियों का लुप्त होना आदि पर्यावरणीय असन्तुलन के ही परिणाम हैं।

#### 2. अधिक आराम/सुविधायें तथा उच्च स्तरीय रहन-सहन :-

पुरातन काल में जब मनुष्य गुफाओं में रहता था, तब उसकी आवश्यकतायें सीमित थीं। जैसे-जैसे समय बीतता गया मनुष्य को ज्ञान प्राप्त होता गया। इस ज्ञान का उपयोग उसने अपने रहन-सहन का स्तर सुधारने में किया है और वह नित्य उसे और अधिक आरामदेह बनाने में लगा है। अपने जीवन को अधिक आरामदेह, मनोरंजक एवं सुविधाजनक बनाने के लिए उसने अनेक तकनीकी आविष्कार किये, जिसके फलस्वरूप मानव अब अन्तिरक्ष में घूम रहा है। बिजली, गाड़ियाँ, हवाई जहाज, टेलीफोन, टेलीविजन तथा कम्प्यूटर जैसे आविष्कारों से उसका जीवन सुखमय हो गया है।

परिणामस्वरूप औद्योगीकीकरण तथा यातायात के विभिन्न साधनों के विकास के लिए हम अत्यधिक ऊर्जा खर्च करने को विवश हो गये हैं। जिसके कारण कोयला, तेल, प्राकृतिक गैस तथा खनिज पदार्थों के संचित भंडार बहुत तेजी से घटते जा रहे हैं।

#### 3. युद्ध :-

युद्ध मानव का सर्वाधिक विनाशकारी तथा व्ययकारी क्रिया कलाप है। यहाँ तक कि शान्ति काल में भी जब युद्ध न हो रहा हो, तब भी बहुत अधिक मात्रा में सम्पदाओं का उपयोग मशीनों के निर्माण, क्रय एवं उनके रख-रखाव में होता है।

# 4. सम्पदाओं का अनुपयुक्त प्रयोग :-

अनुपयुक्त प्रयोग तथा गलत प्रक्रियाओं से भी सम्पदाओं का अपव्यय होता है। प्रकृति से प्राप्त सम्पदाओं का उपयोग मनुष्य सीमा से ऊपर ही नहीं कर रहा है, बिल्क वह इनका दुरुपयोग भी कर रहा है जिससे सम्पदाओं का अपव्यय हो रहा है। उदाहरण के लिए जल का अनियन्त्रित उपयोग करना तथा जंगलों के नाश से वर्षा का कम होना, जल-अभाव का कारण बनते चले जा रहे हैं। मानव जाति के जीवित रहने के लिए प्राकृतिक सम्पदाओं का संरक्षण आवश्यक है।

क्या प्राकृतिक सम्पदा का अपव्यय मानव जाति के उत्तर जीविता (survival) के लिये खतरनाक है? आइये इस प्रकरण पर शिक्षार्थियों से परिचर्चा करते हैं। मानव प्रकृति में रहता है। इसका जीवन प्रकृति में उत्पन्न साधनों अर्थात् प्राकृतिक सम्पदाओं पर निर्भर है। यदि इन सम्पदाओं का लगातार विदोहन होता रहा तो क्या होगा? ये सम्पदायें समाप्त हो जायेंगी तथा मानव जीवन खतरे में पड़ जायेगा।

#### कुछ प्राकृतिक सम्पदाओं के अपव्यय से पर्यावरणीय अधःपतन होता है-

मनुष्य सर्वोच्च विकिसत प्राणी है इसलिए उसकी आवश्यकताएँ भी अन्य प्राणियों से अधिक हैं। अपनी इन आवश्यकताओं को पूरा करने के लिए उसने प्राकृतिक संसाधनों का अंधाधुंध दोहन किया है। एक चीज को पाने में यदि उसका दुष्परिणाम किसी अन्य क्षेत्र में हो रहा है, तो उसने उस ओर ध्यान नहीं दिया। बढ़ती हुयी आबादी, कल-कारखाने, वाहनों की भीड़, निदयों-तालाबों, कुओं आदि में गिरता हुआ कूड़ा-कचरा, वनों की कटान, परमाणविक परीक्षण, कृषि में कीटनाशक तथा रासायिनक उर्वरकों का अनियन्त्रित प्रयोग, विलासिता, पूर्णसाधनों के निर्माण से पर्यावरण प्रदूषित हो रहा है।

प्रदूषण एवं पेड़-पौधों को अन्धाधुंध काटने से आवश्यक सम्पदाओं का अधःपतन होता है-प्रदूषण क्या है? इसकी जानकारी आपको II सेमेस्टर में कराया जा चुका है। प्रदूषण ने हमारे पर्यावरण को दूषित किया ही है, साथ ही हमारी सम्पदाओं को भी क्षतिग्रस्त किया है। कभी-कभी प्रदूषण के कारण नवीकरणीय सम्पदा जैसे वायु, जल तथा स्थल बेकार हो जाते हैं। उदाहरण के लिए प्रदूषण मीठे पानी के अत्यधिक शुद्ध रूप को अम्स्तीय वर्षा में परिवर्तित कर देता है। प्रदूषण वायुमण्डल की



छड़काव से सजीवों में डी0डी0टी0 का प्रवेश

ऊपरी ओजोन' परत को भी क्षितिग्रस्त कर रहा है जबिक यह पर्त पृथ्वी पर रहने वाले जीवों की सूर्य से आने वाली हानिकारक पराबैंगनी किरणों से रक्षा करती है। विभिन्न रसायन जो आस-पास के नदी-नालों में प्रवाहित कर दिये जाते हैं, उनसे उस स्थान के जलीय जन्तु जैसे मछिलयाँ आदि नष्ट हो रहे हैं। कभी-कभी प्रदूषण जिनत पदार्थ खाद्य-शृंखला में प्रवेश कर जाते हैं और विभिन्न जीवों को हानि पहुँचाते हैं। जैसे-डी०डी०टी० नामक कीटनाशक पदार्थ उस वातावरण के लगभग सभी जीवों में पाया जाता है, जहाँ इसका निरन्तर छिड़काव होता है। मनुष्य में डी०डी०टी० के कारण स्वास्थ्य सम्बन्धी विकार उत्पन्न हो जाते हैं। यहाँ तक कि पिक्षयों के अण्डों के कवचों (छिलकों) में इसकी उपस्थित पायी गयी है, इसके फलस्वरूप सेने से पूर्व ही अण्डे टूट जाते हैं और जीव नष्ट हो जाता है।

इस प्रकार प्रदूषण सजीव एवं निर्जीव दोनों प्रकार की प्राकृतिक सम्पदाओं को क्षिति पहुँचाता है।

पारिस्थितिक संतुलन को बनाये रखने के लिये प्राकृतिक सम्पदाओं का सर्वाधिक इस्तेमाल

आवश्यक है:-

प्राकृतिक सम्पदा में जैविक कारक (पौधे एवं जंतु) तथा अजैविक कारक (वायु, जल, भूमि) दोनों ही होते हैं। प्रकृति में जैविक तथा अजैविक कारकों के मध्य पारिस्थितिक संतुलन बना रहता है। यदि हम उन्हें किसी प्रकार से हानि पहुँचाते हैं तो वे भी प्रत्यक्ष या अप्रत्यक्ष रूप से हानि पहुँचायेंगे। इसलिए हमारा दायित्व है कि हम इन सभी कारकों की रक्षा करें, इनके असंयमित उपयोग के स्थान पर इनका सर्वाधिक इस्तेमाल करें। यह इसलिए आवश्यक है ताकि पारिस्थितिक संतुलन बना रहे तथा पृथ्वी पर जीवों का अस्तित्व सुरक्षित रहे।

#### क्रिया कलाप

पानी प्रतिदिन प्रयोग में आने वाली एक महत्वपूर्ण सम्पदा है। अपने घर में इस सम्पदा के अपव्यय पर रोक लगाने की एक योजना बनायें, और इस योजना को सफल बनाने के लिए परिवार के सभी सदस्यों का सहयोग लें।

# कुछ सम्पदाओं की सुरक्षा एवं संरक्षण आवश्यक है- प्राकृतिक सम्पदाओं के संरक्षण के उपाय :-

संरक्षण का अर्थ है सुरक्षित बनाये रखना। प्रकृति में मृदा, जल, वन एवं जंगली जन्तुओं के बीच पारस्परिक संतुलन होता है किन्तु मानव के हस्तक्षेप एवं क्रिया कलापों से यह संतुलन बिगड़ जाता है।



चित्र : व्यर्थ बहता हुआ पानी

अतः समस्त मानव जाति का कर्त्तव्य है कि वह प्राकृतिक सम्पदाओं का संरक्षण करें। सम्पदाओं का संरक्षण कैसे हो?

प्रशिक्षुओं के माध्यम से उत्तर प्राप्त करने की चेष्टा की जाय और निष्कर्ष निकाला जाये कि विभिन्न सम्पदाओं के लिए संरक्षण की प्रक्रिया भिन्न-भिन्न होती है।

कुछ प्राकृतिक सम्पदाओं के संरक्षण हेतु किये गये प्रयास निम्नलिखित हैं।

## मृदा संरक्षण :-

मृदा (मिट्टी) एक प्राकृतिक सम्पदा है। फसल तथा अन्य वनस्पतियाँ मृदा में ही उगती हैं। पेड़ पौधों को काटने से भूमि को मुख्यतः दो प्रकार की हानि होती है—

- (क) मृदा अपरदन अथवा मिट्टी का कटाव
- (ख) भूमि की उर्वरा शक्ति का कम हो जाना।

## (क) मृदा अपरदन अथवा मिट्टी का कटाव तथा रोकने के उपाय-

भूमि की ऊपरी सतह का मिट्टी के कटान या पानी के साथ बह जाने को **मृदा अपरदन** कहते हैं। इसे अधोलिखित उपायों से रोका जा सकता है:-

• अधिकाधिक वृक्ष लगाना चाहिए, क्योंकि वृक्षों की जड़ें, मिट्टी को बाँधे रखती हैं, जिससे वायु एवं जल

द्वारा मिट्टी का अपरदन नहीं होता है।

- पानी मिट्टी की ऊपरी परत को बहा ले जाता है, अतः खेतों से अनावश्यक जल के निकास का उचित
   प्रबन्थ होना चाहिए।
- ढलान वाले क्षेत्रों (पहाड़ों) पर सीद्वीदार खेत बनाने चाहिए।

#### (ख) भूमि की उर्वरता (उपजाऊपन) का संरक्षण :-

- एक ही फसल को बार-बार उगाने से उस खेत की उर्वरा शिक्त कम हो जाती है, अतः खेतों में बदल-बदल कर फसल बोनी चाहिए। इसे फसल-चक्र कहते हैं। जैसे- गेहूँ, गन्ना के बाद दलहनी फसल (मूँग, चना, मटर) उगाना चाहिए।
- समय-समय पर खाद या उर्वरकों का प्रयोग करना चाहिए।

#### जल संरक्षण :-

- अधिक से अधिक वृक्ष लगाये जायें, तािक जल जड़ों के सहारे भूमि में चला जाये, भूमि में जल का भण्डारण बना रहे।
- निदयों पर बाँध बनाकर जल संरक्षण करना चाहिए।
- भूमि में एकत्रित जल को आवश्यक पड़ने पर ही खींचकर उपयोग में लाना चाहिए।
- कल-कारखानों से निकले अपशिष्ट पदार्थों तथा शहर के कूड़ा-करकट एवं गंदे नालों से जल प्रदूषित हो जाता है। अतः इन पदार्थों को जलाशयों तथा निदयों में जाने से रोका जाना चाहिए।

#### वन संरक्षण :-

यद्यपि वन आत्म निर्भर हैं, परन्तु अपने भरण-पोषण के लिए यह अन्य नवीकरणीय सम्पदाओं पर निर्भर रहते हैं, अतः वन की सुरक्षा के लिए आवश्यक है कि वायु, जल और स्थल का संरक्षण किया जाए।

- आग से वनों की रक्षा करनी चाहिए।
- पेड़ों की अन्थाधुंध कटाई तथा जानवरों द्वारा अति चारण से सम्बन्धित आवश्यक नियम बनाये जाने चाहिए।
- काटे गये वृक्षों की जगह नये वृक्ष अवश्य लगाने चाहिए।
- कीट-नाशक दवाओं का प्रयोग कर वृक्षों को रोगों से बचाना चाहिए।
- वनों के संरक्षण की दिशा में उत्तरांचल प्रदेश में किये गये ''चिपको'' आन्दोलन की भाँति अन्य कार्यक्रम
   भी चलाये जाने चाहिए। इसके प्रणेता श्री सुन्दरलाल बहुगुणा हैं।

#### वन्य जीवों का संरक्षण :-

वन्य जीवों के शिकार पर रोक लगाने के सम्बन्ध में शासन द्वारा कानून बनाये गये हैं। इनका कठोरता
 से पालन किया जाना आवश्यक है।

- वन्य जीवों के शरीर से बनी वस्तुओं के निर्माण पर प्रतिबन्ध लगाने सम्बन्धी नियम/कानून बनाये जायें।
- वन्य जीवों की रक्षा के लिए जंगलों की रक्षा आवश्यक है। इसके लिए वृक्षारोपण किया जाय। जंगली जानवरों के लिए अधिक से अधिक "जंगली जीव अभ्यारण्य" स्थापित किये जाने चाहिए।
- उत्तर प्रदेश में जंगली जीव संरक्षण हेतु दुधवा नेशनल पार्क जनपद लखीमपुर खीरी में राज्य सरकार द्वारा स्थापित किया गया है। इसी क्रम में कुकरैल (जनपद-लखनऊ) में विभिन्न प्रकार के सरीसृपों का प्रजनन एवं संरक्षण केन्द्र स्थापित किया गया है।

#### 2. अनवीकरणीय सम्पदाओं का संरक्षण :

अनवीकरणीय सम्पदायें जैसे कोयला, पेट्रोल, प्राकृतिक गैस, खनिज लवण आदि एक बार उपयोग होने के पश्चात् समाप्त हो जाते हैं। इसके निर्माण में लाखों वर्ष लगते हैं तभी प्रकृति में पुनः उपलब्ध हो पाते हैं। ये सम्पदायें पृथ्वी के अन्दर सीमित मात्रा में विद्यमान हैं। आधुनिक युग में इन पदार्थों का उपयोग ईंधन तथा ऊर्जा के रूप में अधिक हो रहा है। यदि हम लगातार इसी गित से इनका उपयोग करते रहें तो क्या होगा? कुछ समय बाद इनके स्रोत समाप्त हो जायेंगे। स्पष्ट है कि इन पदार्थों का उपयोग सीमित मात्रा में तथा सावधानी पूर्वक करना चाहिए।

- इन साधनों का दुरुपयोग नहीं करना चाहिए।
- सभी प्रकार की धातुओं को पुनः चक्रण (Re-cycle) करके उपयोग में लाना चाहिए।
- सम्पदाओं के अपव्यय को हतोत्साहित किया जाना चाहिए।
- कभी समाप्त न होने वाली ऊर्जा के नये-नये स्रोत भी खोजे जाने चाहिए। सौर ऊर्जा, पवन ऊर्जा तथा जल ऊर्जा का हम उपयोग कर रहे हैं लेकिन ईंधन के रूप में अनवीकरणीय सम्पदाओं जैसे डीजल, पेट्रोल आदि की तरह अभी इनका उपयोग सम्भव नहीं हुआ है। इस दिशा में हमें अभी खोज करने की आवश्यकता है।
- ग्रामीण क्षेत्रों में बायोगैस के प्रयोग के लिए भरपूर प्रचार करना चाहिए। यह गैस पशुओं के गोबर, जन्तु व पेड़-पौधों के सड़े-गले भागों के अपघटन से तैयार की जाती है, इसे गोबर गैस भी कहते हैं। संरक्षण के लिये व्यक्तिगत, सामृहिक तथा अन्तर्राष्ट्रीय प्रयासों की आवश्यकता:-

प्राकृतिक सम्पदाओं के ऊपर ही मानव जीवन एवं उसका विकास निर्भर है। यदि हम इस प्राकृतिक सम्पत्ति को कुछ ही शताब्दियों में समाप्त कर देंगे तो क्या होगा?

धरा की प्राकृतिक सम्पदा का हमें नियन्त्रित तथा न्यायोचित उपयोग करना चाहिए, तभी यह प्राकृतिक धरोहर पुनः सृजित होकर हमारी भावी संतित के लिए उपलब्ध हो सकेगी।

यही कारण है कि सम्पूर्ण विश्व प्राकृतिक सम्पदाओं के संरक्षण पर विशेष ध्यान दे रहा है। प्राकृतिक संरक्षण

के लिए राष्ट्रीय एवं अन्तर्राष्ट्रीय प्रयास हो रहे हैं। जन सहयोग से इस प्रयास में अधिक सफलता मिली है। हमें प्रण लेना चाहिए कि हम प्राकृतिक सम्पदा के संरक्षण में एक आदर्श नागरिक का कर्त्तव्य निभाते रहेंगे।

(1) अनवीकरणीय सम्पदा है-

मूल्यांकन

- (i) जल (ii) सूर्य का प्रकाश (iii) प्राकृतिक गैस (iv) सजीव
- (2) गोबर गैस किससे प्राप्त की जाती है?
- (3) मृदा अपरदन में भूमि नष्ट हो जाती है। कथन सत्य है या गलत।
- (4) चिपको आन्दोलन क्या है?
- (5) किन्हीं दो नवीकरणीय तथा अनवीकरणीय सम्पदाओं के नाम लिखिए।
- (6) वन तथा वन्यजीव संरक्षण के तीन-तीन उपाय बताइये।
- (7) आज ग्रामीण तथा शहरी क्षेत्रों में भूमिगत जल का स्तर नीचे क्यों गिरता जा रहा है? कारण स्पष्ट कीजिए।
  - (8) प्राकृतिक सम्पदा का संरक्षण क्यों आवश्यक है?
  - (9) वनों को काटने से क्या असंतुलित हो जायेगा? लिखिए।

## ब्रह्माण्ड जीवों का विलुप्तीकरण

ब्रह्माण्ड जीवों का विलुप्तीकरण प्रकरण को स्पष्ट करने हेतु शिक्षार्थियों से पूछा जाय कि आप के समय में, दादा दादी के समय तथा आपके माता-पिता के कार्यकालों के दौरान प्रकृति में क्या-2 परिवर्तन देखने को मिले हैं? बहुत से जन्तु अब पृथ्वी पर नहीं रहे। बड़े आकार वाले जंगल समाप्त होकर कृषि कार्यों में प्रयुक्त होने लगे। इसी तरह से अपने गाँव व ग्राम पंचायत क्षेत्र के बड़े-2 वृक्ष व बाग कटते चले गये। अर्थात विभिन्न प्रकार के पौधे व जन्तुओं में कमी हुई या नष्ट हुए। आइये जीव जन्तुओं के विलुप्तीकरण विषयक पर चर्चा करके उसे समझने का प्रयास करें।

# • लुप्त होता वन्य जीवन (The Vanishing Wild Life)

मनुष्य के आगमन के लगभग 20 लाख वर्ष पहले भी जन्तु जातियाँ प्राकृतिक कारणों द्वारा नष्ट होती थीं। इनके कुछ परिचित उदाहरण हैं विलुप्त ऐमोनाइट्स, दैत्याकार सिफैलोपोड्स और ब्रैंकियोपोड्स (डिवोनी कल्प) तथा डाइनोसॉर्स (मध्यजीवी कल्प)। परन्तु, जातियों के विलोपन की गित गत दो या तीन सिदयों में सर्वाधिक रही है जो मुख्यतया मनुष्य के विवेकहीन व्यवहार के कारण हुआ। "प्रगित" की धुन में एवं बढ़ती जनसंख्या, कृषि और शहरीकरण के कारण मनुष्य ने वन्य जीवन तथा उनके प्राकृतिक आवासों का पूर्णरूपेण दोहन किया है। उसने वन काट डाले हैं, दलदलों को सुखा डाला है तथा निदयों तथा सागरों को प्रदूषित किया है। मानों

किसी दैवी उद्देश्य से प्रेरित होकर, उसने अपने चारों ओर एक मरुस्थल की रचना की है। परिणामस्वरूप, अनेक जन्तु जातियाँ पूर्णतया लुप्त हो गई हैं, जबिक अनेकों जो आज भी जीवित हैं, विलोपन के कगार पर हैं।

#### क्या आप जानते हैं

एक मोटे आंकलन के अनुसार, पिछली चार सदियों में नष्ट हुई वन्य प्राणीजात जातियों की संख्या निम्न प्रकार रही है-

सत्रहवीं सदी (1600-1700) - 7 जातियाँ विलुप्त अट्ठारहवीं सदी (1700-1800) - 11 जातियाँ विलुप्त उन्नीसवीं सदी (1800-1900) - 27 जातियाँ विलुप्त बीसवीं सदी (1900-2000) - 67 जातियाँ विलुप्त

# (Causes of Extinction of Species)

जातयाँ विलुप्त जातियों की विलुप्ता के कारण Causes of Extinction of Species होने के बहुत से क जीवों की जातियों के विलुप्त होने के बहुत से कारण हो सकते हैं। प्रकृति में यह एक सामान्य क्रिया धीरे-धीरे होती है जब कोई जीव की जाति बदलते वातावरण के अनुसार अपने को अनुकूलित नहीं रख पाती और संघर्ष तथा प्राकृतिक चयन में असफल हो जाती है। परन्तु मनुष्य के खतरनाक कार्यों द्वारा यह प्रक्रिया अब तेज हो गई है। अनुमान है कि लगभग 25,000 पादप और लगभग 70 जन्तुओं की जातियाँ विल्प्तता की कगार पर खड़ी हैं। विलुप्तता के लिये जिम्मेदार कारणों को दो समूहों में समझते हैं—

- (a) प्राकृतिक कारण (Natural Causes)—इनमें हैं—
- (i) भूकम्प (earth quake), बाढ़ (flood), सूखा (drought), पाला, इत्यादि।
- (ii) रोग (diseases)।
- (iii) परागण (pollination) करने वाले कारक नष्ट होना।
- (iv) विदेशी (exotic) जातियाँ जो तेजी से उगती हैं उन्हें लाकर देश में उगाना।
- (v) प्रदूषण (pollution) द्वारा हानि।
- (vi) पौधों एवं जन्तुओं की जनन क्षमता कम होना।
- (vii) हानिकारक उत्परितर्वन (mutation) होना।
- (b) मानव-निर्मित कारण (Man made causes)—मनुष्य अकेला ही सबसे बड़ा कारक है जो प्रकृति में बहुत-सी विपदाओं को उपजाता है। मानवों की गतिविधियाँ पर्यावरण में हानिकारक परिवर्तन लाती हैं। ये गतिविधियाँ हैं---
  - (i) प्राकृतिक आवासों को काट-छाँट करके नष्ट करना।

- (ii) पौधों एवं जन्तुओं का अत्यधिक-उपयोग (over-exploitation) व्यापार और शिक्षा के लिये।
- (iii) पालतु या घरेलू पशुओं द्वारा अतिचारण (over-grazing)।
- (iv) वन-उन्मूलन (deforestation) या जंगल नष्ट करना।
- (v) औद्योगिकीकरण (industrialization), और शहर-विकास (urbanization)।
- (vi) बाँध (dam) और सड़क (road) निर्माण।
- (vii) पत्थरों की खुदाई (quarrying) और खानों की खुदाई (mining)।
- (viii) जल, वायु और मिट्टी में प्रदूषण उत्पन्न करना।

# पादप तथा जन्तु संरक्षण की धारणा (Concept of Plant and Animal Conservation)

संरक्षण ऐसी प्रक्रिया है जिसके द्वारा जीव-मण्डल का बुद्धिमानी से उपयोग करके अधिकतम समय तक अधिकतम लोगों को लगातार लाभ मिलते रहना सम्भव होता है। यह एक जिटल प्रक्रिया है जिसका ध्येय है—
(i) अनिवार्य पारिस्थितिक प्रक्रियाओं और जीवनोपयोगी साधनों को लगातार बनाये रखना, (ii) जातियों की विभिन्नता (diversity) और आनुवांशिक पदार्थों की सीमायें या परिसर सुरक्षित रखना, (iii) उपस्थित जीवों का उचिततम (optimum) उपयोग नियमित करना और उनके हास या विलुप्त होने के अवसर कम करना।

IUCN (International Union for Conservation of Nature and Natural Resources) नामक संस्था ने संरक्षण की आवश्यकता वाले जीवों को पहचानने के लिये कुछ वर्ग निम्नलिखित आधार पर बनाए हैं—

- (i) जन्तुओं तथा पौधों का वर्तमान में और पूर्व काल में भौगोलिक वितरण।
- (ii) समय के साथ जाति की जनसंख्या की कम होने की दर।
- (iii) जाति के प्राकृतिक आवासों का गुण और उपलब्धता।
- (iv) जाति का जैविक और विभव मूल्य (biological and potential value)। उपरोक्त तथ्यों के आधार पर संरक्षण-योग्य जन्तुओं एवं पौथों को चार वर्गों में रखते हैं—
- (1) संकट ग्रस्त-जाति (Endangered species = E)—इस जाति की जनसंख्या क्रांतिक-सीमा से बहुत कम होती है क्योंकि वातावरण प्रतिकूल होता है। यदि हानिकारक प्रभाव बना रहता है तो यह जाति शीघ्र ही विलुप्त हो सकती है।
- (2) सूभेद्य जाति (Vulnerable species = V)—यद्यपि इस जाति की जनसंख्या काफी होती है परन्तु यदि प्रतिकूल दशायें लगातार बनी रहेंगी तो इस जाति के संकट ग्रस्त E वर्ग में आने का भय रहेगा।
  - (3) दुर्लभ जाति (Rare Species = R)—यह जाति पृथ्वी पर कुछ विशेष अनुकूल क्षेत्रों में कम

संख्या में पाई जाती हैं। इनके विलुप्त होने का खतरा रहता है। यह जाति (V) या (E) वर्गों में पहुँच सकती है।

(4) आपत्ति ग्रस्त जाति (Threatened species = T)—उपरोक्त किसी भी वर्ग में आने वाली जाति को आपत्ति ग्रस्त जाति मानते हैं। इन जातियों का संस्क्षण आवश्यक है।

# इसे भी जानिए-

# कुछ संकटग्रस्त पौधों की सूची

|     | नाम                       | वनस्पतिक नाम              | फैमली           |
|-----|---------------------------|---------------------------|-----------------|
| 1.  | एरीडिस क्रिस्पम           | (Aerides crispum)         | Orchidaceae     |
| 2.  | पैफिओपेडिलम फैरीएनम       | Paphiopedilum faire yanum | Orchidaceae     |
| 3.  | एरीया क्रासीकुलिस         | Eria crassi caullis       | Orchidaceae     |
| 4.  | कोमीफोरा-मुकुल            | Commiphora mukul          | Burseraceae     |
| 5.  | डिस्चिडिया बेन्घालेन्सिस  | Dischidia benghalansis    | Asclepiadaceae  |
| 6.  | नेपेन्थिस खासियाना        | Nepenthes Khasiana        | Nepenthaceae    |
| 7.  | राउवल्फिया सर्पेन्टिना    | Rauwolfia serpentina      | Apocynaceae     |
| 8.  | सेन्टैलम एल्बम            | Santalum album            | Santalaceae     |
| 9.  | सिम्पलोकास चेंगपी         | Sumplocos chaengapae      | Symplocaceae    |
| 10. | पोडोफिल्लम हेक्सैन्ड्रम   | Podophyllum hexandrum     | Berberidaceae   |
| 11. | रोडोडेन्ड्रोन एजवर्थी     | Rhododendron edgeworthii  | Ericaceae       |
| 12. | डायोस्कोरिया एलैटा        | Dioscorea alata           | Dioscareaceae   |
| 13. | बैलनोफोरा इन्वोल्यूक्रेटा | Balanophora involucrata   | Balanophoraceae |
| 14. | पाइनस जिरारिडिआना         | Pinus gerardiana          | Pinaceae        |
| 15. | ससुलिया लैप्पा            | Saussulea lappa           | Compositae      |
| 16. | मेग्नोलिया ग्रिफिथी       | Mangolia grifithii        | Magnoliaceae    |
| 17. | ओलेक्स नाना               | Olax nana                 | Olaceae         |
| 18. | पिसिया ब्रेकीटायला        | Picea brachytyla          | Pinaceae        |
| 19. | पोपूलस गैमली              | Populus gamblei           | Salicaceae      |
| 20. | कोल्चीकम ल्यूटम           | Colchicum luteum          | Liliaceae       |



102

## वन्य जीवन संरक्षण की विधियाँ (Methods of Wild Life Conservation)

वन्य प्राणियों का शिकार न केवल भोजन के लिए, बल्कि आर्थिक लाभ कमाने के उद्देश्य से भी होता है। इसी कारण वे लगातार मानव-जन्य क्रूरता का शिकार हो रहे हैं। सरकार उनकी सुरक्षा एवं संरक्षण के लिए भरसक प्रयास कर रही है। इसके लिए कानून बना कर उनके शिकार पर प्रतिबंध लगाया गया है। लेकिन उनका समुचित संरक्षण एवं संवर्धन तभी संभव होगा जब प्रत्येक नागरिक वन्य प्राणियों की रक्षा के महत्त्व को समझेगा

प्राणियों का संरक्षण दो प्रकार से किया जाता है—

- 1. स्वास्थाने संरक्षण (In situ conservation) : इस विधि द्वारा प्राणियों का संरक्षण उसी स्थान पर किया जाता है जहाँ वह सामान्यतः मिलते हैं या मनुष्य द्वारा बनाए गए कृत्रिम इकोतन्त्र में संरक्षण की यह विधि अधिक उपयुक्त मानी गयी है। इसके अन्तर्गत राष्ट्रीय उद्यान, पशुविहार तथा प्राकृतिक रिजर्व आदि सुरक्षित स्थल बनाए गए हैं।
- 2. उत्स्थाने संरक्षण (Ex situ conservation): प्राणियों को उनके प्राकृतिक आवास से हटाकर अन्य सुरक्षित स्थानों पर रखा जाता है। इस विधि में आनुवंशिक संसाधन केन्द्र (genetic resource centre), जीन बैंक (gene bank) आदि की स्थापना की जाती है जिसमें अण्डे, वीर्य, बीज व पराग कण आदि को सुरक्षित रखा जाता है।

वन्य जीवन के संरक्षण के लिए अपनाई जाने वाली सर्वाधिक साधारण विधियाँ संक्षेप में निम्नलिखित प्रकार हैं—

- 1. प्राकृतिक आवास प्रबन्धन (Habitat management) : इसमें वन्य जातियों के स्वभाव और आवास का पारिस्थितिक अध्ययन; आवासों की रक्षा, परिरक्षण और सुधार; तथा संरक्षित होने वाली जातियों से सम्बन्धित गणना और सांख्यिकीय आंकड़े, आदि सम्मिलित हैं।
- 2. उद्यानों (parks), संरक्षित क्षेत्रों (reserves) और जन्तु विहारों (sanctuaries) की स्थापना र राष्ट्रीय उद्यानों, वन्य जीवन संरक्षित क्षेत्रों, जन्तु विहारों, चिड़ियाघरों आदि की स्थापना से अनेक उद्देश्यों की पूर्ति होती है। जैसे, (1) जातियों का उनकी प्राकृतिक अवस्था में संरक्षण करना, (2) वैज्ञानिक, शैक्षिक और मनोरंजन के अवसरों को प्रदान करना, और (3) पर्यटकों को आकर्षित करके राजस्व उपार्जित करना।
- 3. बंदीकरण में प्रजनन (Breeding in captivity): गिंगो (gingo) और मेटासिकोया (metasequoia) जैसे वृक्षों की जातियाँ केवल बंदीकरण में ही जीवित रह सकी हैं। पर्वतीय गोरिला ऐल्बर्टा (Alberta) के राष्ट्रीय उद्यान में सुरक्षित है। आज बाघ, सफेद बाघ और भारतीय शेर राष्ट्रीय उद्यानों में रहते हैं। अन्तिम क्षण से बचाया गया यूरोपीय बिसन पोलैंड के बायोलोवीस्का (Biolowieska) के राष्ट्रीय उद्यान में जीवित है। इसी प्रकार पेरे डेविड का मृग (Pere David's deer), हुपिंग सारस (whooping crane), हवाई राजहंस

(Hawaiian goose), पैरमा वालैबी (Parma wallby) और अरबी कुरंग (Arabian gazelle), जो कभी उन्मूलन के कगार पर थे, अब बंदी प्रजनन के फलस्वरूप वापस संख्या वृद्धि के मार्ग पर माने जाते हैं।

- 4. पुनर्स्थापन (Reintroduction) : अनेक जन्तु जातियाँ जैसे अरबी ऑरिक्स (oryx), ऊँचे एन्डीज़ पर्वत का विक्यूना (vicuna), रूसी बारहिसंघा या सैगा (saiga), मेघरव हंस (trumpeter swan), कृष्णसार (black buck), हंसावर (flamingos), भारतीय मगर (crocodiles), बाघ और गैंडे आदि, जो लगभग विलुप्त थीं, को उनके मूल प्राकृतिक आवासों के समान उचित स्थानों पर प्रजनन करने और फलने-फूलने दिया गया। बाद में, इन्हें अपने प्राकृतिक आवासों के समान अनेक उद्यानों, जन्तु-विहारों और क्षेत्रों में पुनर्स्थापित किया गया।
- 5. जन शिक्षा (Mass education) : किसी संरक्षण कार्यक्रम के लिए जनता को सहभागी बनाने को उन्हें शिक्षित करने की बड़ी आवश्यकता है। इसके लिए अपनाई गई विधियाँ हैं—
  - (1) प्रत्येक वर्ष वन्य जीवन सप्ताह का मनाना।
  - (2) प्रचार साधनों और चल-चित्र प्रदर्शनों द्वारा प्रचार।
  - (3) पर्यटन, निबंध प्रतियोगिता, भाषण, सेमिनार आदि आयोजित करना।
  - (4) शिक्षण संस्थाओं में प्रकृति क्लब (nature clubs) स्थापित करना।
  - (5) वन्य जीवन संबंधी पुस्तकों और पत्रिकाओं का प्रकाशन।
  - (6) नेचुरल हिस्ट्री संग्रहालयों (Natural History Museums) की स्थापना, आदि।
- 6. कानूनों का पालन (Promulgation of laws) : सब देशों ने वन्य जीवन की रक्षा और संरक्षण के लिए कानून लागू किए हैं। भारत में "वन्य जीवन (रक्षा) नियम 1972" नामक व्यापक केन्द्रीय विधान 1972 में बनाया गया था। इससे उपयुक्त अधिकारी की पूर्व अनुमित बिना वन्य प्राणियों को मारना, पकड़ना और शिकार करना तथा चोरी से शिकार करना कानून के अन्तर्गत दंडनीय अपराध हो गए हैं। शिकार-चोरों या तस्करों (poachers) को कठोर और वर्जक दंड देने के लिए कानून में और संशोधन की आवश्यकता है।

## इसे भी जानें-

जीन श्रेंक (Gene bank): यह संस्थान उपयोगी तथा महत्वपूर्ण पौधों के जर्मप्लाज्म (germplasm) को सुरक्षित रखता है। इनमें बीज, अण्डे, कोशायें, परागकण आदि को सुरक्षित रखा जा सकता है। कायिक अंगों को भी बहुत कम ताप पर बर्फ में सुप्तावस्था में रखने की व्यवस्था होती है।

बीज पौधे का जीवित जर्मप्लाज्म है। जिनको कम ताप ( $-10^{\circ}$ C to  $-20^{\circ}$ C) पर, कम ऑक्सीजन की उपस्थिति में सुरक्षित रखते हैं। आवश्यकता होने पर इन बीजों से नये पौधे उत्पन्न किये जा सकते हैं तथा उनके बीजों को भी इसी विधि से सुरक्षित रखा जा सकता है। इस प्रकार के बीजों को ओ**थॉडोक्स** 

बीज (orthodox seeds) कहते हैं जैसे लेग्यूम आदि।

इसके विपरीत कुछ पौधों के बीच कम ताप तथा कम आक्सीजन में मर जाते हैं इनको रिकेल्सीट्रेन्ट बीज (recalcitrant seeds) कहते हैं जैसे- लीची, आदि।

जर्मप्लाज्म (germplasm) को आजकल टिशूकलचर की तकनीक द्वारा भी सुरक्षित रखा जा सकता है। जिन पौधों में बीज नहीं बनते हैं उनमें एक विशेष आनुवंशिकी के क्लोन (clone) को सुरक्षित रखा जाता है। इसके अलावा तने के शीर्ष भाग (shoot tip) को कल्चर (culture) करके विषाणु (virus) से मुक्त पौधे प्राप्त किये जा सकते हैं।

क्रायोप्रिजरवेशन (Cryopreservaton) : इनमें दुर्लभ या संकटग्रस्त पौधों के जर्मप्लाज्म को बहुत कम ताप पर (– 196°C) पर संग्रहित किया जाता है। यह संरक्षण की अच्छी प्रक्रिया है।

जर्मप्लाज्म संरक्षण में विश्वस्वास्थ्य संगठन (World health organisation, WHO), यूनेस्को (UNESCO), विश्वबैंक (WB), मानव तथा जैवमण्डल (MAB) तथा जैव मण्डल रिजर्व प्रोग्राम (BRP) आदि संस्थायें रूचि ले रही हैं।

### वन्य जीवन संस्थायें (Wild Life Organizations)

हाल के वर्षों में मनुष्य ने प्रकृति के साथ ऐसा हस्तक्षेप किया है जैसा पहले कभी नहीं किया था। उसने वनों को नष्ट कर दिया है, दलदलों को जल से खाली किया है, निदयों और सागरों को प्रदूषित किया है, तथा जन्तुओं की पूर्ण जातियों का अस्तित्व मिटा दिया है। बीसवीं सदी के आरम्भ में, इस बात का स्पष्ट बोध हो गया कि जीवन की गुणवत्ता और स्वयं मनुष्य की उत्तरजीविता के लिए मानव के पर्यावरण में वन्य प्राणिजात (wild fauna) और वनस्पित (flora) की उपस्थित बहुत महत्वपूर्ण है। इस चेतना के कारण वन्यजीवन के आरक्षण के लिए अनेक राष्ट्रीय एवं अंतर्राष्ट्रीय संस्थाओं की स्थापना हुई है।

1. यू.आई.सी.एन. (UICN) : सुरक्षावादी चेतना के जन्म के साथ 1948 में स्विटजरलैंड में मोर्गेज़ (Morges) में मुख्यालय सहित एक अन्तर्राष्ट्रीय वैज्ञानिक संस्था बनाई गई। इसे प्रकृति और सम्पदाओं के संरक्षण के लिए अन्तर्राष्ट्रीय संघ (International Union for the Conservation of Nature and Resources or UICN) कहते हैं।

लाल आंकड़े संबंधी पुस्तकें (Red Data Books) : ये यू.आई.सी.एन. (UICN) द्वारा संकलित निदेशिकायें (directories) और योजनायें (schemes) हैं। वे उन जन्तु जातियों के विषय में समसामयिक सूचना देती हैं जो दुर्लभ हैं या जिनके विलोपन का भय है।

2. डब्ल्नू.डब्ल्नू.एफ. (WWF) : विश्व वन्य जीवन कोष, अन्तर्राष्ट्रीय (The World Wild Life Fund or WWF, International) की स्थापना 1961 में हुई। यू.आई.सी.एन. की भाँति यह भी स्विटज़रलैंड

में मोर्गेज में स्थापित हुआ। इसका उद्देश्य पूरे विश्व में वन्य जीवन संरक्षण की गतिविधियों के लिए निधि का संग्रह और वितरण करना है। संयुक्त राष्ट्र की भाँति,, इससे सम्बद्ध विश्व भर में सैंकड़ों संस्थायें हैं। इसके विविध कार्यों में शिक्षा, प्रचार और विज्ञापन सिहत प्रशिक्षण और स्वयं संरक्षण हैं। विश्व वन्य-जीवन कोष, भारत (WWF, India), बम्बई में मुख्यालय सिहत 1969 में आरम्भ किया गया। उसी वर्ष, डब्लू.डब्लू.एफ. ने भारत में "बाघ संरक्षण परियोजना" आरम्भ की। यह विश्व में अपने प्रकार का सर्वाधिक भव्य और विशाल संरक्षण आन्दोलन है।

- 3. डब्ल्नू.आई.आई. (WII): भारत का वन्य जीवन संस्थान (Wild Life Institute of India, WII) भारत सरकार के पर्यावरण और वन मंत्रालय द्वारा 1982 में देहरादून में स्थापित किया गया। यह संस्थान वन्य जीवन प्रबंधन पर प्रशिक्षण एवं अनुसंधान का संचालन करता है और एक त्रैमासिक न्यूज़ लैटर प्रकाशित करता है।
- 4. आई.बी.डब्लू.एल. (IBWL): 1949 में भारत सरकार ने देश के वन्य जीवन पर वन्य जीवन पर वन्य जीवन केन्द्रीय परिषद् (Central Board for Wild Life) नामक परामर्शदात्री समिति गठित की। 1952 में, इसका नाम वन्य जीवन भारतीय परिषद (Indian Board for Wild Life, IBWL) रखा गया। अनेक राज्यों ने अपने स्वयं के वन्य जीवन परामर्शदात्री परिषदें (Wild Life Advisory Boards) बनाकर इसका अनुसरण किया। आई.बी.डब्लू.एल. का मुख्य उद्देश्य कानून बनाकर तथा राष्ट्रीय उद्यानों, जन्तु-विहारों एवं चिड़ियाघरों की स्थापना द्वारा वन्य जीवन का संस्क्षण प्रदान करना है।
- 5. बी.एन.एच.एस. (BNHS): बॉम्बे नेचुरल हिस्ट्री सोसाइटी (Bombay Natural History Society) देश में वन्य जीवन संरक्षण के उद्देश्य के प्रति समर्पित एक अराजकीय संस्था है। इसे 1883 में बम्बई के सात निवासियों ने स्थापित किया। यह सोसाइटी अन्वेषण तथा शैक्षिक एवं क्षेत्रीय कार्यों का संचालन करती है और भारत के वन्य जीवन पर एक पत्रिका निकालती है।
- 6. डब्लू.पी.एस.आई. (WPSI): भारतीय वन्य जीवन परिरक्षण सोसाइटी (Wild Life Preservation Society of India) भी एक अराजकीय संस्था है। इसे 1958 में देहरादून में स्थापित किया गया। यह सोसाइटी विद्यार्थियों और सदस्यों के लिए निकटस्थ जन्तु विहारों और उद्यानों की यात्राएँ संचालित करती है, लुप्त होते हुए प्राणिजात और वनस्पतिजात पर अन्वेषण कराती है, स्कूल के विद्यार्थियों के लिए एक कॉरबेट स्मारक निबन्ध प्रतियोगिता आयोजित करती है तथा चीतल (Cheetal) नामक एक द्विभाषी त्रैमासिक पत्रिका निकालती है।
- 7. जेड.एस.आई. (ZSI) : जूलॉजिकल सर्वे ऑफ इंडिया (zoological Survey of India) की स्थापना अँग्रेजी शासन के अंतर्गत 1916 में कलकत्ता में की गई थी। इसका उद्देश्य भारतीय प्राणिजात का सर्वेक्षण (survey), पर्यवेक्षण (exploration) एवं अनुसंधान (research) करना है। कुल भारत में इसके 36 क्षेत्रीय

#### कार्यालय स्थापित हैं।

#### मूल्यांकन

- 1. संरक्षण योग्य जन्तुओं एवं पौधों को कितने वर्गों में बाँटा जा सकता है-
- (1) सात (2) चार (3) पाँच (4) दस
- (2) IUCN का पूरा नाम लिखिए।
- (3) वर्तमान समय में चीता एक लुप्त या बहुसंख्यक प्राणी है।
- जाय? .र।

## कार्बन एवं उसके यौगिक

इस इकाई को पढ़ने के पश्चात् प्रशिक्ष् निम्नांकित बिन्द्ओं/प्रकरणों को समझ सकेंगे—

- दैनिक जीवन में कार्बन
- कार्बन की उपस्थिति
- कार्बन की उपस्थिति यौगिक के रूप में
- मुक्त रूप में कार्बन की उपस्थिति
- कार्बन के अपररूप
- कार्बन के अपररूप के प्रकार
- कार्बनिक रसायन का परिचय
- कार्बन ईंधन का आवश्यक अवयव
- पेट्रोलियम - ईंधन का आवश्यक अवयव
- पेट्रोलियम का शोधन
- कार्बन में आबन्ध सहसंयोजी बन्ध
- कार्बन के गुण
- संतृप्त एवं असंतृप्त कार्बन यौगिक
- कार्बन यौगिकों की नाम पद्यति
- कार्बन यौगिकों के रासायनिक गुणधर्म
- साबुन एवं अपमार्जक
- दैनिक जीवन में कार्बन

### प्रशिक्षुओं से चर्चा करें—

- क्या कभी बाग-बगीचे में सूखी पत्तियों को जलते देखा है?
- जब पत्तियाँ जल जाती हैं तो क्या दिखाई देता है?
- जली हुई पत्तियाँ किस रंग की एवं कैसी दिखाई देती हैं?

प्रशिक्षुओं से चर्चा के दौरान प्राप्त अनुभवों एवं बिन्दुओं के आधार पर स्पष्ट करें कि जली हुई पत्तियाँ काले राख एवं पाउडर के रूप दिखाई देती हैं। इसी प्रकार लकड़ी का कोयला, पत्थर का कोयला, लकड़ी या कोई भी वस्तु जलाने के उपरान्त काले 'राख' में परिवर्तित हो जाती है। इस राख में **कार्बन** तत्व उपस्थित होता है। राख में उपस्थित कार्बन काले रंग का होता है। यह आवश्यक नहीं है कि जिस भी पदार्थ में कार्बन उपस्थित होगा वह पदार्थ काला ही होगा।

108

यह वस्तु में उपस्थित परमाणुओं की व्यवस्था पर निर्भर करता है कि उसका रंग एवं प्रकृति कैसी है? चर्चा-प्रश्न—प्रशिक्षुओं से निम्नवत् बिन्दुओं पर चर्चा करें—

- क्या आपने पेंसिल के बीच में लगी लिड को देखा है? यह लिड किस रंग की है?
- लिंड को हाथ से तोड़ने का प्रयास करें, क्या होता है?
- आपने हीरे का नाम सुना है? अथवा देखा है? बताइए यह किस रंग का है तथा इसकी प्रकृति कैसी है? चर्चा उपरान्त प्रशिक्षुओं के अनुभवों के आधार पर स्पष्ट करें कि पेंसिल में उपस्थित लिंड का रंग काला है तथा वह मुलायम है जिसे आसानी से तोड़ा जा सकता है। तोड़ने पर यह मुलायम काले रंग के चिकने पाउडर में परिवर्तित हो जाता है। जबिक हीरा चमकदार एवं कठोर है। इससे स्पष्ट है कि कार्बन का रंग काला नहीं है।

#### कार्बन की उपस्थिति-

प्रशिक्षुओं से निम्नलिखित क्रियाकलाप कराएँ—

क्रियाकलाप—सुबह से आपने जिन वस्तुओं का उपयोग अथवा उपभोग किया हो उनमें से दस वस्तुओं की सूची बनाइए।

- इस सूची को अपने सहपाठियों द्वारा बनाई सूची के साथ मिलाइए तथा सभी वस्तुओं को निम्नलिखित सारिणी में वर्गीकृत कीजिए।
  - एक से अधिक सामग्रियों से बनी वस्तुओं को सारिणी के उपयुक्त स्तम्भों में रिखए—

| धातु से बनी वस्तुएँ | काँच ∕िमट्टी से बनी वस्तुएँ | अन्य |
|---------------------|-----------------------------|------|
|                     |                             |      |
|                     |                             |      |
|                     |                             |      |
|                     |                             |      |
|                     |                             |      |
|                     |                             |      |
|                     |                             |      |
|                     |                             |      |
|                     |                             |      |
|                     |                             |      |
|                     |                             |      |
|                     |                             |      |

अन्तिम स्तम्भ में आने वाली वस्तुओं पर ध्यान दीजिए—आपके शिक्षक आपको बताएंगे कि इनमें से अधिकांश वस्तुएँ कार्बन के यौगिकों से बनी हैं। इसका परीक्षण कराने के लिए इन पदार्थों को जला कर दिखाएँ। क्या उत्पाद प्राप्त होता है? प्रशिक्षुओं को निष्कर्ष निकालकर व्याख्या करने का अवसर दें।

स्पष्ट करें कि उपर्युक्त सारिणी में सूचीबद्ध वस्तुओं के नाम, जैसे—भोजन, कपड़े, दवा, पुस्तक, लकड़ी, साबुन, तेल, ईंधन आदि अनेक वस्तुओं में कार्बन की उपस्थिति प्रमुख रूप से है। दैनिक जीवन में उपयोग की जाने वाली वस्तुएँ, जैसे पेंसिल के पाए जाने वाला बीच में लगा हुआ लिड, लालटेन एवं लैम्प जलाने पर काँच की चिमनी पर जमी कालिख तथा आँख में लगाने वाला काजल, लकड़ी को आंशिक रूप से जलाने पर कार्बन प्राप्त होता है। कार्बन सभी सजीवों (जन्तुओं एवं वनस्पतियों) तथा दैनिक जीवन में प्रयुक्त होने वाले पदार्थों, जैसे—कागज, लकड़ी, खर, टायर, कपड़े, तेल, साबुन एवं ईंधन में यौगिक के रूप में उपस्थित होता है। निर्जीव वस्तुओं में भी कार्बन मुक्तरूप (तत्व) एवं यौगिक दोनों ही रूपों में उपस्थित हो सकता है।

भूपपर्टी तथा वायुमण्डल में अत्यन्त अल्प मात्रा में कार्बन उपस्थित है। भूपपर्टी में खुनिजों (जैसे—कार्बोनेट, कोयला एवं पेट्रोलियम) के रूप में केवल 0.02% कार्बन उपस्थित है तथा वायुमण्डल में 0.03% कार्बन डाईऑक्साइड उपस्थित है। प्रकृति में इतनी अल्प मात्रा में कार्बन उपस्थित होने के बावजूद कार्बन का अत्यधिक महत्व है। इस अध्याय में हम कार्बन एवं उसके यौगिकों के विषय में जानेंगे।

#### चर्चा-प्रश्न-

- क्या बता सकते हैं कि कार्बन की उपस्थिति मुक्त रूप में कहाँ-कहाँ पायी जाती है?
- यौगिकों के रूप में कार्बन कहाँ-कहाँ उपस्थित रहता है?

चर्चा के दौरान प्रतिभागियों द्वारा प्राप्त अनुभवों के आधार पर स्पष्ट करें कि कार्बन मुक्त अवस्था एवं यौगिकों के रूप में कहाँ-कहाँ पाए जाते हैं?

### मुक्त रूप में कार्बन की उपस्थिति-

जैसा कि हमने भी जाना कि अधिकांश सजीव एवं निर्जीव पदार्थों में कार्बन यौगिकों के रूप में प्राप्त होता है। साथ ही कहीं-कहीं कार्बन कोयला, कालिख, ग्रेफाइट, हीरा आदि विभिन्न रूपों में मुक्त अवस्था में प्राप्त होता है। ये सभी पदार्थ कार्बन तत्व के विभिन्न रूप हैं जिन्हें हम कार्बन अपररूप कहते हैं। कार्बन के इन विभिन्न रूपों के सभी रासायनिक गुण तो एक समान होते हैं परन्तु भौतिक गुण भिन्न-भिन्न होते हैं। पदार्थ के इस गुण को अपररूपता कहते हैं।

#### चर्चा-प्रश्न-

- हीरा कठोर एवं ग्रेफाइट मुलायम क्यों है, जबिक दोनों में ही कार्बन उपस्थित है?
- हीरा चमकदार एवं ग्रेफाइट काले अथवा स्लेटी रंग का क्यों दिखाई देता है?
- कार्बन के क्रिस्टलीय अथवा अक्रिस्टलीय रूपों में मुख्य अन्तर क्या है?

110

#### चर्चा उपरान्त स्पष्ट करें-

कार्बन के विभिन्न अपररूपों के भौतिक गुणों में भिन्नता दिखाई देती है। हीरा चमकदार व कठोर होता है जबकि कोयला, काजल, ग्रेफाइट काले रंग के होते हैं। इनके गुणों में भिन्नता कार्बन परमाणुओं की व्यवस्था में भिन्नता के कारण होता है। कार्बन परमाणुओं की व्यवस्था के आधार पर कार्बन के विभिन्न अपररूपों को दो वर्गों में बाँटा जाता है। क्रिस्टलीय तथा अक्रिस्टलीय। क्रिस्टलीय रूप में कार्बन परमाणु निश्चित क्रम में व्यवस्थित रहते हैं, जबिक अक्रिस्टलीय रूप में कार्बन परमाणु निश्चित क्रम में व्यवस्थित नहीं रहते हैं। कार्बन के क्रिस्टलीय एवं अक्रिस्टलीय रूप इस प्रकार हैं :



#### कार्बन के क्रिस्टलीय अपररूप-

हीरा, फुलरीन तथा ग्रेफाइट कार्बन के क्रिस्टलीय अपररूप हैं। इनमें कार्बन परमाण् एक निश्चित व्यवस्था के अन्तर्गत व्यवस्थित होते हैं। इनकी निश्चित क्रिस्टलीय संरचना होती है। जिनके कारण इनके गुणों में विशिष्टता पाई जाती है। आइए इनकी संरचना का अध्ययन करते हैं।

#### ग्रेफाइट :-

ग्रेफाइट शब्द ग्रीक भाषा के ग्रेफो से बना है, जिसका अर्थ है लिखना। पेंसिल के अन्दर पतली छड़ (लीड) जिससे लिखा जाता है, ग्रेफाइट की बनी होती है। ग्रेफाइट में कार्बन के परमाण् इस प्रकार व्यवस्थित रहते हैं कि उनकी अनेक समतलीय परतें होती हैं। प्रत्येक परत पर छः कार्बन परमाण् षटकोणीय छल्ले (रिंग) के रूप में व्यवस्थित रहते हैं। छल्ले का प्रत्येक कार्बन परमाण् तीन अन्य कार्बन परमाण्ओं से जुड़ा होता है। ग्रेफाइट क्रिस्टल में कार्बन परमाणुओं की षटकोणीय रिंगों से बनी अनेक परतें होती हैं। परतों के मध्य क्षीण बलों के कारण ग्रेफाइट नर्म और स्नेहक होता है। ग्रेफाइट सलेटी रंग



ग्रेफाइट की परत संरचना

का मुलायम एवं चिकना पदार्थ है, इसका गलनांक 3700° सेल्सियस होता है। यह विद्युत का सुचालक है। इसका प्रयोग विद्युत इलेक्ट्रोड बनाने में किया जाता है। कार्बन के अन्य अपररूपों की तरह यह भी ऑक्सीजन के साथ अभिक्रिया कर कार्बन डाई ऑक्साइड गैस बनाता है।

#### हीरा



चित्र : हीरा की त्रिविमीय संरचना

आप में से अधिकांश लोगों ने 'हीरा' का नाम सुना होगा। आप में से बहुत से उन्हें रत्न के रूप में जानते होंगे। हीरा कार्बन का एक पारदर्शी क्रिस्टलीय अपररूप है। इसमें कार्बन का एक परमाणु कार्बन के अन्य चार परमाणुओं से जुड़ा होता है। कार्बन परमाणुओं की चतुष्फलकीय व्यवस्था के कारण यह पूर्णतः कठोर तथा त्रिविमीय संरचना का होता है।

### हीरा कठोरतम प्राकृतिक पदार्थ है।

हीरे का उपयोग काँच काटने तथा धातुओं में छेद करने के लिए होता है। इसके विभिन्न कोणों पर काट कर गहने एवं अँगूठी बनाने में भी प्रयोग करते हैं। भारत में हीरा बहुत ही कम मात्रा में पन्ना, सतना (म०प्र०), बाँदा (उ०प्र०) तथा गोलकुण्डा (कर्नाटक) में पाया जाता है।

### फुलरीन

सन् 1985 में रसायनज्ञों ने ग्रेफाइट को अत्यधिक उच्च ताप तक गर्मकर कार्बन का एक नया अपररूप संश्लेषित किया। इसका अणु गोलीय होता है जिसमें अनेक कार्बन परमाणु एक दूसरे से जुड़े होते हैं जैसे  $\mathbf{C}_{60}$ ,  $\mathbf{C}_{70}$ । अमेरिकी वास्तुकार बकिमन्स्टर फुलर के नाम पर इन गोले अणुओं को फुलरीन नाम दिया गया।

#### चर्चा प्रश्न-

- यौगिकों के रूप में कार्बन कहाँ-कहाँ पाए जाते हैं?
- क्या ग्रेफाइट एवं हीरा कृत्रिम रूप से बनाया जा सकता है?
- क्या ग्रेफाइट से हीरा बना सकते हैं?

चर्चा उपरान्त प्रशिक्षुओं को स्पष्ट करें कि अत्यधिक उच्च ताप एवं दाब पर ग्रेफाइट को हीरे में परिवर्तित किया जा सकता है। कोयले (काष्ट चारकोल) को विद्युत-भट्टी में गरम करके कृत्रिम रूप से ग्रेफाइट बनाया जा सकता है।

#### आओ जानें–

- ग्रेफाइट कृत्रिम रूप से कोक (कार्बन का एक अक्रिस्टलीय रूप) को विद्युत भट्ठी में गरम करके बना सकते हैं। यह अपारदर्शी होता है।
- अत्यधिक उच्च दाब एवं ताप पर ग्रेफाइट को हीरे में परिवर्तित किया जा सकता है। उच्च ताप एवं दाब
   पर ग्रेफाइट में कार्बन परमाणुओं की संरचना को पुनर्व्यवस्थित कर देता है। काँच काटने के लिए प्रयुक्त कटर तथा
   अन्य कई औजारों में प्रयुक्त हीरे प्रायः ग्रेफाइट से बनाए जाते हैं।

#### कार्बन के अक्रिस्टलीय अपररूप

कार्बन के अक्रिस्टलीय अपररूपों में कार्बन परमाणुओं की कोई निश्चित व्यवस्था नहीं होती है अर्थात् इनकी क्रिस्टलीय संरचना नहीं होती है। कोयला, लकड़ी का कोयला, काजल आदि कार्बन के अक्रिस्टलीय अपररूप हैं। कोयले तथा लकड़ी के कोयले, जन्तु तथा सुगर चारकोल में प्रायः कुछ अशुद्धियाँ उपस्थित रहती हैं। आइये इन अक्रिस्टलीय अपररूपों की विस्तृत चर्चा करते हैं—

### लकड़ी का कोयला (काष्ठ चारकोल)

काष्ठ चारकोल लकड़ी को ऑक्सीजन की कम उपस्थिति में दहन कर प्राप्त किया जाता है। इस प्रक्रम को भंजक आसवन कहते हैं। यह काले रंग का पदार्थ है। यह जल से हल्का है जिसके कारण जल में तैरता है। इसका प्रयोग ईंधन के रूप में तथा जल के शोधन में किया जाता है।

#### जन्तु चारकोल

यह जन्तुओं की हिड्डियों के **भंजक आसवन** से बनाया जाता है। जन्तु चारकोल में कैल्सियम फॉस्फेट के साथ कार्बन लगभग 12% होता है। इसका प्रयोग चीनी उद्योग में गन्ने के रस को रंगहीन करने में तथा फॉस्फोरस के यौगिक बनाने में किया जाता है।

### सुगर चारकोल (कैरामेल)

सुगर चारकोल कार्बन का अक्रिस्टलीय अपररूप है। इसे चीनी  $(C_{12}H_{22}O_{11})$  पर सान्द्र गन्धक के अम्ल की क्रिया द्वारा बनाया जाता है। गन्धक का अम्ल चीनी से जल को अवशोषित कर लेता है तथा कार्बन शेष रह जाता है।

$$C_{12}H_{22}O_{11} \xrightarrow{H_2SO_4} 12 C + 11H_2O$$

सुगर चारकोल मुख्य रूप से अपचायक के रूप में प्रयुक्त होता है। यह धातु ऑक्साइड को धातु के रूप में अपचयित करता है।

### लैम्प ब्लैक (कालिख)

यह मोम अथवा तेल को वायु की सीमित मात्रा में जलाने पर प्राप्त होता है। ग्रामीण क्षेत्रों में लैम्प/दीपक से प्रकाश उत्पन्न करने के लिए मिट्टी का तेल प्रयोग किया जाता है। इससे प्राप्त कालिख में कार्बन 98-99% का होता है।

कालिख का प्रयोग प्रिन्टर की स्याही, जूते की पॉलिश तथा रबर टायर आदि बनाने में किया जाता है।



चित्र सं0 1.3 काजल बनान

#### कार्बन की उपस्थिति यौगिकों के रूप में

आप दैनिक जीवन में ऐसे बहुत से पदार्थों का उपयोग करते हैं जिनके रासायनिक सूत्र जानते हैं। अन्य ऐसे बहुत से यौगिक हैं जिनके रासायनिक सूत्र से आप परिचित नहीं हैं। आइये दैनिक जीवन में प्रयुक्त कुछ ऐसे पदार्थों के रासायनिक सूत्रों का अवलोकन तालिका में करें जिनमें कार्बन उपस्थित है—

| पदार्थ का नाम             | रासायनिक नाम         | रासायनिक सूत्र                  |
|---------------------------|----------------------|---------------------------------|
| चूना पत्थर/खड़िया/संगमरमर | कैल्सियम कार्बोनेट   | CaCO <sub>3</sub>               |
| खाने का सोडा              | सोडियम बाई कार्बोनेट | NaHCO <sub>3</sub>              |
| धावन सोडा                 | सोडियम कार्बीनेट     | Na <sub>2</sub> CO <sub>3</sub> |
| कार्बन डाइ ऑक्साइड        | कार्बन डाईऑक्साइड    | CO <sub>2</sub>                 |

इन सभी यौगिकों में कार्बन उपस्थित है। प्राकृतिक गैस, कुिकंग गैस (एलपीजी), पेट्रोल, डीजल, मिट्टी का तेल, पैराफिन मोम एवं कोलतार आदि में कार्बन, कार्बन हाइड्रोजन के यौगिक के रूप में होता है जिन्हें **हाइड्रोकार्बन** कहते हैं। भोजन में उपस्थित प्रमुख घटक कार्बोहाइड्रेट, वसा, प्रोटीन, विटामिन आदि कार्बन के महत्वपूर्ण यौगिक हैं, जिनसे शरीर को कार्य करने के लिए ऊर्जा प्राप्त होती है और ये शरीर की पेशियों, रक्त, ऊतकों व हिड्डियों के निर्माण में सहायक होते हैं। शरीर की कोशिकाओं में कार्बन किसी न किसी रूप में अवश्य उपस्थित होता है। सजीव संसार की संरचना में कार्बन केन्द्रीय तत्व की भूमिका में होता है।

- सभी सजीवों में कार्बन और उसके यौगिक पाए जाते हैं।
- कुछ निर्जीव पदार्थों में कार्बन मुक्त या यौगिक के रूप में उपस्थित होता है।

## कुछ और भी जानें :

क्या आप जानते हैं कि जब आप बीमार पड़ते हैं या बदन में दर्द होता है तब आप डॉक्टर को दिखाकर दवा की गोलियाँ या पीने के सिरप का प्रयोग करते हैं। कभी-कभी हल्के सिर दर्द में आपकी माँ आपके माथे में बाम लगा देती हैं जिससे आपको आराम हो जाता है। ऐसे कोई भी पदार्थ जो किसी रोग के रोकने, आराम पहुँचाने या उपचार के उपयोग में आता है, औषधि कहलाता है। अधिकांश औषधियाँ कार्बन के यौगिक हैं। कुछ प्रमुख औषधियों के नाम एवं उपयोग अधोलिखित हैं—

| क्रम संख्या | रोगों के नाम | प्रयोग में आने वाली औषधि |
|-------------|--------------|--------------------------|
| 1           | बुखार        | एन्टीपायरेटिक (ज्वरनाशक) |
| 2           | पेट दर्द     | एन्टीस्पास्मोडिक         |
| 3           | सर दर्द      | एनलजिसिक                 |
|             |              |                          |

| 4 | घाव          | रोगाणुनाशक घोल             |
|---|--------------|----------------------------|
| 5 | पेचिश, कालरा | एण्टी बायोटिक (प्रतिजैविक) |

चेतावनी-किसी भी औषधि का प्रयोग डॉक्टर की सलाह से ही करना चाहिए।

#### कार्बन ईंधन का आवश्यक अवयव-

#### चर्चा-प्रश्न

- वाहन एवं कारखानों में ईंधन के रूप में क्या-क्या प्रयोग करते हैं?
- खाना पकाने के लिए हम ईंधन के रूप में क्या-क्या प्रयोग करते हैं?
- क्या खाना पकाने वाली गैस में भी कार्बनिक यौंगिक हैं?
- एल. पी. जी. क्या है?

#### चर्चा-उपरान्त स्पष्ट करें-

हम दैनिक जीवन में खाना पकाने के लिए द्रवित पेट्रोलियम गैंस (एल.पी.जी.), लकड़ी, बायोगैंस आदि का उपयोग ईंधन के रूप में करते हैं। ईंधन वे पदार्थ हैं जिनसे दहन क्रिया द्वारा उष्मा प्राप्त होती है। अधिकांश ईंधनों में कार्बन यौगिक या तत्व के रूप में उपस्थित रहता है। वर्तमान में ऊर्जा की मांग का प्रमुख हिस्सा ईंधन को जलाकर प्राप्त किया जाता है। जैसे—कारखानों में, सड़क, समुद्र तथा वायु परिवहन में ईंधन ऊर्जा के स्त्रोतों के रूप में प्रयुक्त होता है। सभी ईंधन जैसे पेट्रोल, डीजल, मिट्टी का तेल, लकड़ी, कोयला आदि में कार्बन एक आवश्यक तत्व होता है।

दैनिक जीवन के विभिन्न क्रिया कलापों में ऊर्जा के स्रोत के रूप में ईंधन का उपयोग किया जाता है। निम्नवत् तालिका में अंकित कार्य के समक्ष उसमें प्रयुक्त ईंधन का नाम लिखें-

| क्र.सं. | कार्य/यंत्र    | प्रयुक्त ईंधन | क्रम सं0 | कार्य ⁄ यंत्र | प्रयुक्त ईंधन |
|---------|----------------|---------------|----------|---------------|---------------|
| 1       | खाना पकाना     | एल.पी.जी.     | 5        | कार           | पेट्रोल/डीजल  |
| 2       | पानी गर्म करना |               | 6        | ट्रैक्टर      |               |
| 3       | चाय बनाना      |               | 7        | पम्पिंग सेट   |               |
| 4       | जनरेटर         |               | 8        | थ्रेसर        |               |

### ईंधन के स्रोत क्या हैं?

ईंधन के अनेक स्रोत हैं।

### 1. जैव द्रव्यमान (बायोमास)

वनस्पतियों एवं जंतुओं के शरीर में स्थित पदार्थों को जैव द्रव्यमान कहते हैं, जैसे—लकड़ी, कृषि, अपशिष्ट तथा गोबर आदि। ये गाँवों में खर्च होने वाली ऊर्जा का अधिकांश अंश प्रदान करते हैं। लकड़ी तथा कृषि अपशिष्ट, औद्योगिक संस्थानों में भी उपयोग किये जाते हैं, जैसे—गन्ने की खोई जिसे प्रायः कई उद्योगों में बायलरों में पानी गर्म करने के लिये जला जाता है। ग्रामीण घरों में प्रायः चूल्हों में लकड़ी जलाते हैं। इन चूल्हों की दक्षता बहुत कम होती है। उनसे केवल 8% ऊर्जा का उपयोग हो पाता है। शेष ईंधन अपूर्ण दहन के फलस्वरूप धुआँ उत्पन्न करता है जो प्रदूषण बढ़ाता है।

### 2. कच्चे तेल के कुएँ

इन कुओं द्वारा तेल भण्डारों से प्राप्त होने वाले कच्चे तेल के प्रभाजी आसवन से विभिन्न पेट्रोलियम पदार्थ ईंधन रूप में प्राप्त होते हैं।

#### 3. कोयले की खान

इन खानों से ईंधन के रूप में पत्थर का कोयला प्राप्त किया जाता है।

#### चर्चा-प्रश्न-

- क्या ईंधन पदार्थ की तीनों अवस्थाओं में पाये जाते हैं?
- पेट्रोल, डीजल एवं कैरोसीन का तेल हमें कहाँ से प्राप्त होते हैं?
- क्या हम इसे मूल रूप में ही प्रयोग कर सकते हैं?
   चर्चा उपरान्त स्पष्ट करें—

### पेट्रोलियम, ईंधन तथा अन्य उत्पाद का प्रमुख स्रोत :

पृथ्वी के अन्दर करोड़ों वर्ष पहले भौगोलिक उथल-पुथल के फलस्वरूप जीव-जन्तु दब गये। मृत जीव-जन्तु ऊष्मा, दाब तथा उत्प्रेरक क्रिया के द्वारा अपघटित होकर पेट्रोलियम में परिवर्तित हो गये। पेट्रोलियम विभिन्न हाइड्रोकार्बनों का मिश्रण है।

पेट्रोलियम शब्द की उत्पत्ति लैंटिन के दो शब्दों 'पेट्रा' (Petra-चट्टान) तथा 'ओलियम' (Oleum-तेल) से हुई है। यह पृथ्वी के भीतर चट्टानों के नीचे पाया जाता है। अतः इसे ख़िनज तेल भी कहते हैं। पृथ्वी के भीतर तैरते हुए पेट्रोलियम भण्डारों के साथ प्रायः, गैस का एक भण्डार भी विद्यमान होता है, जिसे प्राकृतिक गैस कहते हैं, जो गैसीय हाइड्रोकार्बनों का मिश्रण है।

### कुछ और भी जानें :

पेट्रोलियम को द्रव सोना (Liquid Gold) भी कहा जाता है। वर्तमान युग में पेट्रोलियम किसी राष्ट्र के लिए सोने से भी अधिक कीमती है। किसी भी राष्ट्र की उन्नित काफी हद तक इस बात पर निर्भर करती है कि उसके पास कितना पेट्रोलियम है। कृषि, उद्योग, यातायात, संचार आदि विभिन्न कार्यों में इसका उपयोग अत्यन्त महत्वपूर्ण है। पेट्रोलियम उभरी हुई अभेद्य (अपारगम्य) चट्टानों को बेधित कर प्राप्त किया जाता है। विश्व का सबसे पहला तेल कूप अमेरिका के पेंसिलवेनिया में 1859 ई0 में खोदा गया।

116

1867 ई0 में भारत का पहला तेल कुआँ असम के मकक में खोदा गया।

### पेट्रोलियम का शोधन-

पेट्रोलियम गहरे भूरे रंग का तेल जैसा चिकना एवं जल से हल्का द्रव है। यह अनेक हाइड्रोकार्बनों का मिश्रण है। पेट्रोलियम के विभिन्न अवयवों का क्वथनांक भिन्न-भिन्न होता है। पेट्रोलियम का शोधन तेल शोधन कारखानों में प्रभाजी आसवन विधि द्वारा किया जाता है।

कच्चे तेल को प्रभाजक स्तम्भ के पेंदे में भरकर उसे 400° सेल्सियस तक गर्म करते हैं। इस ताप पर पेट्रोलियम के फाल्ट जैसे प्रभाजों को छोड़कर बाकी समस्त प्रभाज वाष्पित हो जाते हैं। इस वाष्प के ठण्डा होने के प्रक्रम में विभिन्न प्रभाज भिन्न भिन्न ताप पर द्रवित होते जाते हैं, जिन्हें पृथक कर लिया जाता है।

पेट्रोलियम के प्रभाजी आसवन से प्राप्त लाभप्रद अवयव इस प्रकार हैं—एस्फाल्ट, पैराफिन मोम, स्नेहक तेल, डीजल, कैरोसीन, पेट्रोल, पेट्रोलियम ईथर, प्राकृतिक गैस। एस्फाल्ट, स्नेहक तेल तथा पैराफिन मोम को छोड़कर अन्य समस्त अवयव आसानी से प्रज्विलत हो सकते हैं तथा ऊष्मा उत्पन्न करते हैं। इन्हें प्रायः ईंधन के रूप में उपयोग किया जाता है। पेट्रोलियम के प्रभाव के उपयोग के आधार पर निम्नलिखित तालिका को पूरा करें।

| क्रमांक | पेट्रोलियम प्रभाज     | पेट्रोलियम प्रभाज को प्रयोग करने वाली वस्तुएं/मशीनें/वाहन के नाम |
|---------|-----------------------|------------------------------------------------------------------|
| 1.      | पेट्रोल               | स्कूटर, मोटर साइकिल, मोटरकार                                     |
| 2.      | डीजल                  |                                                                  |
| 3.      | मिट्टी का तेल         |                                                                  |
| 4.      | प्राकृतिक गैस         | गैसीय ईंधन, उर्वरक कारखाना                                       |
| 5.      | द्रवित पेट्रोलियम गैस |                                                                  |

### कुछ और भी जानें :

द्रवित पेट्रोलियम गैस (एल.पी.जी.) के रिसाव का पता लगाने के लिए इसमें गंधवाला पदार्थ एथिल मरकैप्टन  $(C_2H_sSH)$  मिश्रित कर दिया जाता है। एल.पी.जी. मुख्यतः आइसो ब्यूटेन एवं प्रोपेन गैसों का मिश्रण होती है जो कि गन्धहीन होती है।

### कोयला (कोक)

भौगोलिक उथल-पुथल के फलस्वरूप लाखों वर्ष पूर्व घने जंगल पृथ्वी के अन्दर दब गये। ये दबे हुए मृत पेड़-पौधे उच्च ताप एवं दाब के प्रभाव से कोल (पत्थर का कोयला) के रूप में परिवर्तित हो गये। कोयला एक जीवाश्म ईंधन हैं। भारत में कोयले के भण्डार मुख्यतः बिहार, उड़ीसा, मध्यप्रदेश तथा पश्चिमी बंगाल में पाये जाते हैं।

कोयले में अधिकांश कार्बन, थोड़ी मात्रा में सल्फर व कुछ दाह्य पदार्थ (जलने वाला पदार्थ) होते हैं। यह तीन मुख्य

रूपों में पाया जाता है। भूरा कोयला (लिगनाइट), डामर कोयला (बिटयूमिनस) तथा एन्थ्रासाइट। विभिन्न प्रकार के कोयले कार्बन, दाह्य पदार्थ तथा नमी की मात्रा भिन्न-भिन्न होती हैं। भूरे कोयले (लिगनाइट) में 38% कार्बन, 19% दाह्य पदार्थ तथा शेष 43% नमी होती हैं। एन्थ्रासाइट में 96% कार्बन 1% दाह्य पदार्थ तथा केवल 3% नमी होती है। बिटयूमिनस कोयला में 65% कार्बन होता है। यह सबसे महत्वपूर्ण कोल ईंधन कोयले से प्राप्त ईंधन हैं।

### कोयले से प्राप्त ईंधन

लोहे के रिटार्ट में कोयले को वायु की अनुपस्थिति में गर्म करने पर अधोलिखित प्रभाज प्राप्त होते हैं, जिनका उपयोग ईधन के रूप में किया जाता है।

#### 1. कोलतार–

यह काले रंग का बदबूदार गाढ़ा द्रव होता है। इसमें बेंजीन, टालूईन, नैप्थलीन, फिनॉल इत्यादि कार्बनिक यौगिक उपस्थित होते हैं।

#### 2. **कोक**—

यह रिटार्ट में अवशेष के रूप में रहता है। कोक, चारकोल की भाँति यह एक अच्छा ईंधन है, तथा धुआ रहित ज्वाला के साथ जलता है। इसका उपयोग धातु के अयस्कों से धातु निष्कर्षण में अपचायक के रूप में किया जाता है।

#### 3. कोल गैस-

यह हाइड्रोजन, कार्बन मोनो ऑक्साइड, मीथेन, एथिलीन, एसिटलीन आदि का मिश्रण है।

कोल गैस ईंधन एवं प्रदीपक के रूप में प्रयुक्त होती है। गैस में उपस्थित असंतृप्त हाइड्रोकार्बन (एथिलीन, एसिटलीन) के जलने से प्रकाश उत्पन्न होता है।

#### चर्चा-प्रश्न

ईंधन कितने प्रकार के होते हैं? इनके क्या उपयोग हैं?
 चर्चा उपरान्त ईंधन के प्रकार पर चर्चा करें—

### ईंधन के प्रकार

### 1. घरेलू ईंधन

लकड़ी, कोयला, कैरोसीन (मिट्टी का तेल), द्रवित पेट्रोलियम गैस (एलपीजी) आदि घरों में प्रयुक्त होने वाले अथवा घरेलू ईंधन हैं।

### 2. औद्योगिक ईंधन

पेट्रोल, डीजल, नेप्था, कोयला, प्राकृतिक गैस (सी.एन.जी.) आदि विभिन्न उद्योगों में प्रयुक्त **औद्योगिक ईंधन** हैं।

#### 3. इंजन ईंधन

पेट्रोल, डीजल, मिट्टी का तेल आदि विभिन्न प्रकार के इंजनों को चलाने में प्रयुक्त **इंजन ईंधन** हैं।

#### 4. रॉकेट ईंधन

मेथिल हाइड्राजीन, द्रवित हाइड्रोजन आदि जेट, राकेट एवं मिसाइलों में प्रयुक्त **रॉकेट ईंधन** हैं।

लकड़ी, कोयला, गोबर के कण्डे, कृषि अपशिष्ट एवं पेट्रोलियम उत्पाद आदि ईंधन परम्परागत ईंधन कहलाते हैं। इन सभी ईंधनों में कार्बन या कार्बनिक यौगिकों के दहन से ऊष्मीय ऊर्जा प्राप्त होती है। ईंधन के जैविक स्रोत जो अब समाप्त हो रहे हैं, उनका संरक्षण आवश्यक है। ऊर्जा के वैकल्पिक स्रोत जैसे सौर ऊर्जा, विद्युत ऊर्जा, नाभिकीय ऊर्जा आदि का भी ईंधन के विकल्प के रूप में प्रयोग किया जा रहा है।

#### आओ जानें-

- ईंधन पदार्थ की तीनों अवस्थाओं में पाये जाते हैं।
- लकड़ी का कोयला (चारकोल), पत्थर का कोयला, गोबर के कण्डे एवं कृषि अपशिष्ट आदि ठोस ईंधन हैं।
- मिट्टी का तेल, डीजल, पेट्रोल, गैसोलीन, एल्कोहल आदि द्रव ईंधन हैं।
- ullet गोबर गैस, वाटर गैस ( $H_2$  + CO), कोल गैस, प्रोड्यूसर गैस ( $N_2$  + CO), प्राकृतिक गैस, द्रवित पेट्रोलियम में (एल.पी.जी.) आदि गैसीय ईंधन हैं।

### कार्बनिक यौगिक

#### चर्चा प्रश्न-

- कार्बनिक एवं अकार्बनिक पदार्थों में मूल अन्तर क्या है?
- संतृप्त एवं असंतृप्त हाइड्रोकार्बन क्या हैं?

### चर्चा उपरान्त स्पष्ट करें-

1. कार्बनिक (Organic) 2. अकार्बनिक (Inorganic)

19वीं शताब्दी के आरम्भ में पदार्थों को उनके प्राकृतिक स्रोतों के आधार पर दो वर्गों में विभाजित किया गया-जन्तुओं और वनस्पतियों (जीवधारी) से उपलब्ध पदार्थों को कार्बनिक पदार्थ तथा खनिज पदार्थों, चट्टानों, भूगर्भ आदि जैसे निर्जीव स्रोतों से उपलब्ध पदार्थों को अकार्बनिक पदार्थ कहा गया। चीनी, यूरिया, एल्कोहल, सिरका आदि कार्बनिक यौगिकों के वर्ग में तथा सोडियम क्लोराइड, हाइड्रोक्लोरिक अम्ल, कैल्सियम कार्बोनेट, कार्बन डाई ऑक्साइड आदि यौगिक अकार्बनिक यौगिकों के वर्ग में रखे गये।

सन् 1828 ई0 में व्हेलर ने सर्वप्रथम प्रयोगशाला में कार्बनिक यौगिक ''यूरिया'' का संश्लेषण किया। यूरिया प्रयोगशाला में बनने वाला पहला कार्बनिक यौगिक हैं। यूरिया अमोनियम सायनेट को गर्म करके बनाया गया। NH₄CNO——NH,CONH,

अमोनियम सायनेट यूरिया

यौगिकों की एक बड़ी संख्या ऐसी है, जिनमें उपस्थित तत्वों में से एक तत्व कार्बन होता है उनको कार्बनिक यौगिक कहते हैं। परन्तु कुछ कार्बन युक्त यौगिक कार्बनिक यौगिक के अन्तर्गत नहीं आते हैं। जैसे  ${
m CO}_2$ ,  ${
m CO}$ , कार्बनिट, बाइकार्बोनेट, साइनाइड आदि। कार्बन युक्त यौगिकों को कार्बनिक यौगिक तथा कार्बन रहित यौगिकों को अकार्बनिक यौगिक नाम देकर वर्गीकरण किया गया। सामान्यतः सभी कार्बनिक यौगिक हाइड्रोकार्बन या उसके व्युत्पन्न होते हैं तथा मेथेन एवं इसके व्युत्पन्नों को छोड़कर लगभग सभी कार्बनिक यौगिकों में कार्बन-कार्बन बन्ध होता है।

कार्बनिक यौगिकों का अध्ययन रसायन शास्त्र की जिस शाखा में किया जाता है वह कार्बनिक रसायन कहलाती है।

प्रशिक्षुओं से चर्चा करें-

### हाइड्रोकार्बन क्या है?

कार्बन तथा हाइड्रोजन तत्वों के रासायनिक संयोग से बने यौगिक हाइड्रोकार्बन कहलाते हैं। जैसे—मेथेन  $(CH_4)$ , एथेन  $(C_2H_6)$ , एथिलीन  $(C_2H_4)$ , एसिटलीन  $(C_2H_2)$  आदि।

#### 1. संतृप्त हाइड्रोकार्बन

वे हाइड्रोकार्बन यौगिक जिनमें कार्बन-कार्बन के मध्य एकल बन्ध होता है अर्थात कार्बन की चारों संयोजकताएं एकल बन्ध द्वारा संतृप्त रहती है, **संतृत हाइड्रोकार्बन** कहलाते हैं।

उदाहरण : मेथेन (CH4) एथेन (C2H6)

### 2. असंतृप्त हाइड्रोकार्बन

ऐसे हाइड्रोकार्बन, जिनमें कार्बन-कार्बन परमाणु के मध्य कम से कम एक द्विबन्ध या त्रिबन्ध उपस्थित हो, असंतृप्त हाइड्रोकार्बन कहलाते हैं। **उदाहरण** : एथिलीन  $(C_2H_4)$  ऐसिटलीन  $(C_2H_4)$ 

मेथेन (CH<sub>5</sub>)

मेथेन, सरलतम हाइड्रोकार्बन यौगिक है। इसके एक अणु में कार्बन के एक परमाणु के साथ चार हाइड्रोजन परमाणु जुड़े होते हैं। मेथेन प्राकृतिक गैस और तेल कूपों से निकलने वाली गैसों में उपस्थित होती है। दलदली स्थानों में पेड़-पौधों व अन्य कार्बनिक पदार्थों के सड़ने से उत्पन्न गैसों का मुख्य घटक मेथेन गैस होती है। मेथेन को इसिलए मार्श गैस भी कहते हैं। मेथेन और वायु के मिश्रण को प्रज्जवित करने पर भयंकर विस्फोट होता है। कोयले की खानों में विस्फोट होने का यही कारण होता है।

#### चर्चा प्रश्न-

कार्बन के यौगिकों में मुख्यत; बन्ध किस प्रकार का होता है?

### कार्बन में आबन्धन (Bonding)

कार्बन के इलेक्ट्रॉनिक विन्यास के बारे में अध्ययन करेंगे। कार्बन की परमाणु संख्या 6 है। कार्बन के विभिन्न कक्षा में इलेक्ट्रॉनों का वितरण कैसे होगा? कार्बन में कितने संयोजकता इलेक्ट्रॉन होंगे?

हम जानते हैं कि बाहरी कोश को पूरी तरह से भर देने अर्थात् उत्कृष्ट गैस विन्यास को प्राप्त करने की प्रवृत्ति के आधार पर तत्वों की अभिक्रियाशीलता समझायी जाती है। आयिनक यौगिक बनाने वाले तत्व सबसे बाहरी कोश से इलेक्ट्रॉन प्राप्त करके या उनका हास करके इसे प्राप्त करते हैं। कार्बन के सबसे बाहरी कोश में चार इलेक्ट्रॉन होते हैं तथा उत्कृष्ट गैस विन्यास को प्राप्त करने के लिए इसको चार इलेक्ट्रॉन प्राप्त करने या खोने की आवश्यकता होती है। यदि इन्हें इलेक्ट्रॉनों को प्राप्त करना या खोना हो तो;

- (i) ये चार इलेक्ट्रॉन प्राप्त कर  $C^+$  ऋणायन बना सकता है। लेकिन छः प्रोटॉन वाले नाभिक के लिए दस इलेक्ट्रॉन, अर्थात चार अतिरिक्त इलेक्ट्रॉन धारण करना मुश्किल हो सकता है।
- (ii) ये चार इलेक्ट्रॉन खो कर  $C^{4+}$  धनायन बना सकता है। लेकिन चार इलेक्ट्रॉनों को खो कर छः प्रोटॉन वाले नाभिक में केवल दो इलेक्ट्रॉनों का कार्बन धनायन बनाने के लिए अत्यधिक ऊर्जा की आवश्यकता होगी।

कार्बन अपने अन्य परमाणुओं अथवा अन्य तत्वों के परमाणुओं के साथ संयोजकता इलेक्ट्रॉनों की साझेदारी करके इस समस्या को सुलझा लेता है। केवल कार्बन ही नहीं बल्कि अनेक अन्य तत्व भी इसी प्रकार इलेक्ट्रॉन की साझेदारी करके अणुओं का निर्माण करते हैं। जिन इलेक्ट्रॉनों की साझेदारी की जाती है वे दोनों परमाणुओं के बाहरी कोश के ही होते हैं, तथा इनके फलस्वरूप दोनों ही परमाणु उत्कृष्ट गैस विन्यास की स्थित को प्राप्त करते हैं। कार्बन के यौगिकों की चर्चा करने से पहले इलेक्ट्रॉनों की साझेदारी से बने कुछ सामान्य अणुओं को समझते हैं।

अब हम मेथेन को देखते हैं जो कार्बन का यौगिक है। ईंधन के रूप में मेथेन का अधिकाधिक उपयोग होता है तथा यह बायोगैस एवं संपीडित प्राकृतिक गैस (CNG) का प्रमुख घटक है। यह कार्बन के सर्वाधिक सरल यौगिकों में से एक है। मेथेन का सूत्र  $\mathbf{CH}_4$  है। जैसा कि आप जानते हैं, हाइड्रोजन की संयोजकता 1 है। कार्बन चतुःसंयोजक है क्योंकि इसमें चार संयोजकता इलेक्ट्रॉन होते हैं। उत्कृष्ट गैस विन्यास की स्थित को प्राप्त करने के लिए कार्बन इन इलेक्ट्रॉनों की साझेदारी हाइड्रोजन के चार परमाणुओं के साथ करता है।



इस प्रकार दो परमाणुओं के बीच इलेक्ट्रॉन के एक युग्म की साझेदारी के द्वारा बनने वाले आबंध **सहसंयोजी आबंध** कहलाते हैं। सहसंयोजी आबंध वाले अणुओं में भीतर तो प्रबल आबंध होता है, लेकिन इनका अंतराअणुक बल कम होता है। फलस्वरूप इन यौगिकों के क्वथनांक एवं गलनांक कम होते हैं। चूँिक परमाणुओं के बीच इलेक्ट्रॉनों की साझेदारी होती है और आवेशित कण बनते हैं; सामान्यतः ऐसे सहसंयोजी यौगिक विद्युत के कृचालक होते हैं।

### कार्बन की सर्वतोमुखी प्रकृति

- (i) कार्बन में कार्बन के ही अन्य परमाणुओं के साथ आबंध बनाने की अद्वितीय क्षमता होती है जिससे बड़ी संख्या में अणु बनते हैं। इस गुण को शृंखलन (catenation) कहते हें। इन यौगिकों में कार्बन की लंबी शृंखला, कार्बन की विभिन्न शाखाओं वाली शृंखला अथवा वलय में व्यवस्थित कार्बन भी पाए जाते हैं। साथ ही, कार्बन के परमाणु एक, द्वि अथवा त्रि आबंध से जुड़े हो सकते हैं। कार्बन परमाणुओं के बीच केवल एक आबंध से जुड़े कार्बन के यौगिक संतृप्त यौगिक कहलाते हैं। दि- अथवा त्रि-आबंध वाले कार्बन के यौगिक असंतृप्त यौगिक कहलाते हैं। कार्बन यौगिकों में जिस सीमा तक शृंखलन का गुण पाया जाता है वह किसी और तत्व में नहीं मिलता। सिलिकॉन हाइड्रोजन के साथ यौगिक बनाते हैं जिनमें सात या आठ परमाणुओं तक की शृंखला हो सकती है, लेकिन यह यौगिक अति अभिक्रियाशील होते हैं। कार्बन-कार्बन आबंध अत्यिधक प्रबल होता है, अतः यह स्थायी होता है। फलस्वरूप अनेक कार्बन परमाणुओं के साथ आपस में जुड़े हुए अनेक यौगिक प्राप्त होते हैं।
- (ii) चूँिक कार्बन की संयोजकता चार होती है, अतः इसमें कार्बन के चार अन्य परमाणुओं अथवा कुछ अन्य एक संयोजक तत्वों के परमाणुओं के साथ आबंधन की क्षमता होती है। ऑक्सीजन, हाइड्रोजन, नाइट्रोजन, सल्फर, क्लोरीन तथा अनेक अन्य तत्वों के साथ कार्बन के यौगिक बनते हैं, फलस्वरूप ऐसे विशेष गुण वाले यौगिक बनते हैं जो अणु में कार्बन के अतिरिक्त उपस्थित तत्व पर निर्भर करते हैं।

अधिकतर अन्य तत्वों के साथ कार्बन द्वारा बनाए गए आबंध अत्यंत प्रबल होते हैं जिनके फलस्वरूप ये यौगिक अतिशय रूप में स्थायी होते हैं। कार्बन द्वारा प्रबल आबंधों के निर्माण का एक कारण इसका छोटा आकार भी है। इसके कारण इलेक्ट्रॉन के सहभागी युग्मों को नाभिक मजबूती से पकड़े रहता है। बड़े परमाणुओं वाले तत्वों से बने आबंध तुलना में अत्यंत दुर्बल होते हैं।

#### कार्बनिक यौगिक

कार्बन में पाए जाने वाले दो विशिष्ट लक्षणों, चतुःसंयोजकता और शृंखलन से बड़ी संख्या में यौगिकों का निर्माण होता है। अनेक यौगिकों के अकार्बनिक परमाणु अथवा परमाणु के समूह विभिन्न कार्बन शृंखलाओं से जुड़े होते हैं। मूल रूप से इन यौगिकों को प्राकृतिक पदार्थों से प्राप्त किया गया था तथा यह समझा गया था कि ये कार्बन यौगिक अथवा कार्बनिक यौगिक केवल सजीवों में ही निर्मित हो सकते हैं। अर्थात्, यह माना गया कि उनके संश्लेषण के लिए एक 'जीवन शक्ति' आवश्यक थी। 1828 में फ्रेडिएक वोहलर (Friedrich Wohler) ने अमोनियम सायनेट से यूरिया बनाकर

इसे असत्य प्रमाणित किया। लेकिन कार्बन, कार्बोनेट तथा बाइकार्बोनेट लवणों के अतिरिक्त सभी कार्बन यौगिकों का अध्ययन अभी भी कार्बनिक रसायन के अंतर्गत होता है।

कार्बन तथा हाइड्रोजन के संतृप्त यौगिकों के सूत्र तथा संरचनाएँ

|               | -       | <i>c</i> .                     |        |
|---------------|---------|--------------------------------|--------|
| कार्बन परमाणु | नाम     | सूत्र                          | संरचना |
| <br>की संख्या |         |                                |        |
|               | 22      |                                |        |
| 1             | मेथेन   | CH <sub>4</sub>                |        |
| 2             | एथेन    | $C_2H_6$                       |        |
|               |         |                                |        |
| 3             | प्रोपेन | C <sub>3</sub> H <sub>8</sub>  |        |
| 4             | ब्यूटेन | C <sub>4</sub> H <sub>10</sub> |        |
|               |         |                                |        |
| 5             | पेन्टेन | C <sub>3</sub> H <sub>12</sub> |        |
| 6             | हेक्सेन | $C_6H_{14}$                    |        |
| G             | 170 F9  | 6 <sup>11</sup> 14             |        |

किंतु आइए हम ब्यूटेन पर पुनर्विचार करें। यदि हम चार कार्बन परमाणुओं से कार्बन 'कंकाल' बनाएँ तो हमें पता चलता है कि दो विभिन्न 'कंकाल' बन सकते हैं :

शेष संयोजकता के स्थान पर हाइड्रोजन भरने से हमें निम्नलिखित प्राप्त होता है :

#### चित्र

हम देखते हैं कि इन दोनों संरचनाओं में एक ही सूत्र  $C_4H_{10}$  है। समान आणविक सूत्र लेकिन विभिन्न संरचनाओं वाले ऐसे यौगिक संरचनात्मक समावयन कहलाते हैं।

सीधी तथा शाखाओं वाली कार्बन शृंखलाओं के अतिरिक्त कुछ यौगिकों में कार्बन के परमाणु वलय के आकार में  $\alpha$  व्यवस्थित होते हैं। जैसे, साइक्लोहेक्सेन का सूत्र  $C_6H_{12}$  है तथा उसकी संरचना निम्न है :

#### चित्र

क्या आप साइक्लोहेक्सेन की इलेक्ट्रॉन बिंदु संरचना को चित्रित कर सकते हैं? सीधी शृंखला, शाखित शृंखला तथा चक्रीय कार्बन यौंगिक सभी संतृप्त अथवा असंतृप्त यौंगिक हो सकते हैं। जैसे, बेन्जीन ( $C_{\mu}$ ) की संरचना निम्न है :

#### चित्र

केवल कार्बन एवं हाइड्रोजन वाले ये सभी <mark>कार्बनिक यौगिक हाइड्रोकार्बन कहलाते हैं। इनमें से संतृप्त हाइड्रोकार्बन</mark> 'ऐल्केन' कहलाते हैं। ऐसे असंतृप्त हाइड्रोकार्बन जिनमें एक या अधिक दोहरे आबंध होते हैं 'ऐल्कीन' कहलाते हैं। एक या अधिक त्रि-आबंध वाले 'ऐल्काइन' कहलाते हैं।

### मुझसे दोस्ती करेंगे?

कार्बन अत्यंत मैत्रीपूर्ण तत्व है। अभी तक हमने कार्बन तथा हाइड्रोजन के यौगिकों की चर्चा की। लेकिन कार्बन अन्य तत्वों; जैसे—हैलोजेन, ऑक्सीजन, नाइट्रोजन तथा सल्फर के साथ भी आबंध बनाता है। हाइड्रोकार्बन शृंखला में यह तत्व एक या अधिक हाइड्रोजन को इस प्रकार प्रतिस्थापित करते हैं कि कार्बन की संयोजकता संतुष्ट रहती है।

#### चर्चा-प्रश्न-

क्या कार्बनिक यौंगिकों में कुछ अन्य विषम परमाणु भी जुड़ते हैं?

चर्चा उपरान्त स्पष्ट करें कि यौगिकों में हाइड्रोजन को प्रतिस्थापित करने वाले तत्वों को विषम परमाणु कहते हैं। यह विषम परमाणु कुछ प्रकार्यात्मक समूहों में भी उपस्थित होते हैं। यह विषम परमाणु और वे प्रकार्यात्मक समूह जिनमें यह उपस्थित होते हैं; यौगिकों को विशिष्ट गुण प्रदान करते हैं। यह गुण कार्बन शृंखला की लम्बाई और प्रकृति पर निर्भर नहीं होते, फलस्वरूप यह प्रकार्यात्मक समूह (Functional group) कहलाते हैं। सारणी में कुछ महत्वपूर्ण प्रकार्यात्मक समूह दिए गए हैं। एकल रेखा के द्वारा समूह की मुक्त संयोजकता अथवा संयोजकताएँ दर्शायी गई हैं। हाइड्रोजन के एक

या अधिक अणुओं को प्रतिस्थापित करके इस संयोजकता के द्वारा प्रकार्यात्मक समूह कार्बन शृंखला से जुड़े रहते हैं।

सारणी : कार्बन यौगिकों में कुछ प्रकार्यात्मक समूह

|         | प्रकार्यात्मक समृह     | प्रकार्यात्मक समृह का फार्मूला    |
|---------|------------------------|-----------------------------------|
| Cl/Br   | हैलो - (क्लोरो/ब्रोमो) | —Cl, —Br                          |
|         |                        | (हाइड्रोजन परमाणु के प्रतिस्थापी) |
| ऑक्सीजन | 1. ऐल्कोहॉल            | —ОН                               |
|         | 2. ऐत्ल्डिहाइड         |                                   |
|         | 3. कीटोन               |                                   |
|         |                        |                                   |

#### 4. कार्बेक्सिलिक अम्ल

आपने देखा कि कार्बन परमाणुओं को आपस में जोड़कर विभिन्न लंबाई की शृंखलाएँ बनाई जा सकती हैं। साथ ही, इन कार्बन शृंखलाओं में स्थित हाइड्रोजन परमाणुओं को उपरोक्त किसी भी प्रकार्यात्मक समूहों में प्रतिस्थापित किया जा सकता है। एल्कोहॉल जैसे प्रकार्यात्मक समूह की उपस्थित कार्बन यौगिक के गुणधर्मों को प्रभावित करती है, चाहे कार्बन शृंखला की लंबाई कुछ भी हो। जैसे,  $CH_3OH$ ,  $C_2H_5OH$ ,  $C_3H_7OH$  तथा  $C_3H_9OH$  के रासायिक गुणधर्मों में अत्यधिक समानता है। अतः यौगिकों की ऐसी शृंखला जिसमें कार्बन शृंखला में स्थित हाइड्रोजन को एक ही प्रकार का प्रकार्यात्मक समूह प्रतिस्थापित करता है, उसे समजातीय श्रेणी कहते हैं।

यदि हम उत्तरोत्तर यौगिकों के सूत्रों को देखें, जैसे :

CH, तथा C,H, - इनमें एक -CH, - इकाई का अंतर है

C,H, तथा C,H, - इनमें एक -CH, - इकाई का अंतर है

#### आओ जानें–

### क्यों जलते हुए पदार्थ ज्वाला उत्पन्न करते हैं अथवा नहीं करते हैं?

क्या आपने कभी कोयले अथवा लकड़ी की अग्नि को देखा है? यदि नहीं, तो अगली बार जब भी अवसर मिले तो आप ध्यान से देखिए कि लकड़ी अथवा कोयले का जलना आरंभ होने पर क्या होता है। आपने देखा कि एक मोमबत्ती या गैस स्टोव की एल.पी.जी. जलते समय ज्वाला उत्पन्न करती है। यद्यपि आप देखेंगे कि अँगीठी में जलने वाला कोयला या तारकोल कभी-कभी लाल रंग के समान उज्जवल होता है तथा बिना ज्वाला के ऊष्मा देता है। ऐसा इसलिए होता है क्योंकि केवल गैसीय पदार्थों के जलने पर ही ज्वाला उत्पन्न होती है। लकड़ी या तारकोल जलाने पर उपस्थित वाष्पशील पदार्थ वाष्पीकृत हो जाते हैं तथा आरंभ में ज्वाला के साथ जलते हैं।

गैसीय पदार्थों के परमाणुओं को ताप देने पर एक दीप्त ज्वाला दिखाई देती है तथा उज्जवल होना आरंभ करती है। प्रत्येक तत्व के द्वारा उत्पन्न रंग उस तत्व का अभिलाक्षणिक गुण होता है। गैस स्टोव की ज्वाला में ताँबे के तार को जलाने का प्रयास कीजिए तथा इसके रंग का प्रेक्षण कीजिए। आपने देखा कि अपूर्ण दहन से कज्जल उत्पन्न होता है जो कार्बन होता है। इसके आधार पर आप मोमबत्ती की पीले रंग की ज्वाला का क्या कारण बताएँगे?

#### चर्चा प्रश्न-

- साबुन एक कार्बनिक यौगिक है-
- साबुन, किस प्रकार कपड़ों से मैल निकाल देता है?

### साबुन और अपमार्जक

#### चर्चा उपरान्त स्पष्ट करें-

#### क्रियाकलाप

- दो परखनलियों में 10-10 mL जल लीजिए।
- दोनों में एक-एक बूँद तेल (पाक तेल) डालिए एवं उन्हें 'A' तथा 'B' नाम दीजिए।
- परखनली 'B' में साबुन के घोल की कुछ बूँदें डालिए।
- दोनों परखनलियों को समान समय तक जोर-जोर से हिलाइए।
- क्या हिलाना बंद करने के बाद दोनों परखनिलयों में आप तेल एवं जल की परतों को अलग-अलग देख सकते हैं?
- कुछ देर तक दोनों परखनलियों को स्थिर रिखए एवं फिर उस पर ध्यान दीजिए। क्या तेल की परत अलग हो जाती है? ऐसा किस परखनली में पहले होता है।



इस क्रियाकलाप में सफाई में साबुन के प्रभाव का पता चलता है। अधिकांश मैल तैलीय होते हें और आप जानते हैं कि तेल पानी में अघुलनशील है। साबुन के अणु लंबी शृंखला वाले कार्बोक्सिलिक अम्लों के सोडियम एवं पोटैशियम लवण होते हैं। साबुन का आयनिक भाग जल में घुल जाता है जबिक कार्बन शृंखला तेल में घुल जाती है। इस प्रकार साबुन के अणु मिसेली संरचना तैयार करते हैं जहाँ अणु का एक सिरा तेल कण की ओर तथा आयनिक सिरा बाहर की ओर होता है। इससे पानी में इमल्शन बनता है। इस प्रकार साबुन का मिसेल मैल को पानी में घुलाने में मदद करता है और हमारे कपड़े साफ हो जाते हैं।

क्या आप मिसेल की संरचना बना सकते हैं जो साबुन को हाइड्रोकार्बन में घोलने से बनता है।

#### मिसेल

साबुन के अणु ऐसे होते हैं जिनके दोनों सिरों के विभिन्न गुणधर्म होते हैं। जल में विलेय एक सिरे को **जलरागी** 





कहते हैं तथा हाइड्रोकार्बन में विलेय दूसरे सिरे को जलविरागी कहते हैं। जब साबुन जल की सतह पर होता है तब इसके अणु अपने को इस प्रकार व्यवस्थित कर लेते हैं कि इसका आयनिक सिरा जल के अंदर होता है जबिक हाइड्रोकार्बन पूँछ (दूसरा छोर) जल के बाहर होती है। जल के अंदर इन अणुओं की एक विशेष व्यवस्था होती है जिससे इसका हाइड्रोकार्बन सिरा जल के बाहर बना होता है। ऐसा अणुओं का बड़ा गुच्छा बनने के कारण होता है जिसमें जलविरागी पूँछ गुच्छे के आंतरिक हिस्से में होती है जबिक उसका आयनिक सिरा गुच्छे की सतह पर होता है। इस संरचना को मिसेल कहते हैं। मिसेल के रूप में साबुन स्वच्छ करने में सक्षम होता है क्योंकि तैलीय मैल मिसेल के केंद्र में एकत्र हो जाते हैं। मिसेल विलयन में कोलॉइड के रूप में बने रहते हैं तथा आयन-आयन विकर्षण के कारण वे अवक्षेपित नहीं

आसानी से हटाए जा सकते हैं। साब्न के मिसेल प्रकाश को प्रकीर्णित कर सकते

हैं। यही कारण है कि साबुन का घोल बादल जैसा दिखता है।

#### आओ जानें

क्या आपने कभी स्नान करते समय अनुभव किया कि झाग मुश्किल से बन रहा है एवं जल से शरीर धो लेने के बाद भी कुछ अघुलनशील पदार्थ (स्कम) जमा रहता है। ऐसा इसिलए होता है, क्योंकि साबुन कठोर जल में उपस्थित कैल्सियम एवं मैग्नीशियम लवणों से अभिक्रिया करता है। ऐसे में आपको अधिक मात्रा में साबुन का उपयोग करना पड़ता है। एक अन्य प्रकार के यौगिक यानी अपमार्जक का उपयोग कर इस समस्या को निपटाया जा सकता है। अपमार्जक लंबी कार्बोक्सिलिक अम्ल शृंखला के अमोनियम एवं सल्फोनेट लवण होते हैं। इन यौगिकों को आवेशित सिरा कठोर जल में उपस्थित कैल्शियम एवं मैग्नीशियम आयनों के साथ अघुलनशील पदार्थ नहीं बनाते हैं। इस प्रकार वह कठोर जल में भी प्रभावी बने रहते हैं। सामान्यतः अपमार्जकों का उपयोग शेंपू एवं कपड़े धोने के उत्पाद बनाने में होता है।

### मूल्यांकन

- 1. निम्नलिखित प्रश्नों में सही विकल्प छाँटकर लिखिए-
- (क) खाना बनाते समय यदि बर्तन की तली बाहर से काली हो रही है तो इसका मतलब है कि
  - (i) भोजन पूरी तरह नहीं पका है।
  - (ii) ईंधन पूरी तरह से नहीं जल रहा है।
  - (iii) ईंधन आर्द्र है।
  - (iv) ईंधन पूरी तरह से जल रहा है।

### (ख) प्रकृति में कार्बन पाया जाता है-

- (i) केवल मुक्त अवस्था में
- (ii) केवल यौगिकों में
- (iii) मुक्त एवं यौगिक दोनों अवस्थाओं में
- (iv) केवल अपने अपररूपों में
- (ग) कार्बन का क्रिस्टलीय रूप है-
  - (i) जन्तु चारकोल
  - (ii) ग्रेफाइट
  - (iii) कोयला
  - (iv) लकड़ी का चारकोल
- (घ) कुकिंग गैस में किसकी मात्रा अधिक है-
  - (i) मेथेन

| (ii) एथेन                                                                                  |
|--------------------------------------------------------------------------------------------|
| (iii) एथिलीन                                                                               |
| (iv) ब्यूटेन                                                                               |
| (ङ) निम्नलिखित में से किसमें कार्बन नहीं पाया जाता है—                                     |
| (i) कोयला में                                                                              |
| (ii) चीनी में                                                                              |
| (iii) रोटी में                                                                             |
| (iv) नमक में                                                                               |
| (च) निम्नलिखित में से सबसे अधिक कठोर कौन है-                                               |
| (i) ग्रेफाइट                                                                               |
| (ii) हीरा                                                                                  |
| (iii) कोयला                                                                                |
| (iv) जन्तु चारकोल                                                                          |
| 2. रिक्त स्थानों की पूर्तिं कीजिए–                                                         |
| (क) पेट्रोल ईंधन है।                                                                       |
| (ख)ग्रेफाइट कार्बन का रूप है।                                                              |
| (ग) हीरा की कठोरता का कारण है।                                                             |
| (घ) सभी सजीव तथा कुछ निर्जीवों में उपस्थित है।                                             |
| (ङ) सरलतम हाइड्रोकार्बन है।                                                                |
| (च) पेंसिल में उपस्थित काला पदार्थ है।                                                     |
| 3. निम्नलिखित कथनों में सही कथन के आगे सही $()$ तथा गलत कथन के आगे गलत $(\times)$ का चिह्न |
| लगाइए—                                                                                     |
| (क) हीरा कार्बन का अक्रिस्टलीय रूप है।                                                     |
| (ख)सुगर चारकोल कार्बन का शुद्धतम अक्रिस्टलीय अपररूप है।                                    |
| (ग) सभी हाइड्रोकार्बन कार्बनिक पदार्थ है।                                                  |
| (घ) लकड़ी के चूल्हे की दक्षता सबसे अधिक है।                                                |
| (ङ) पेट्रोलियम को द्रव सोना भी कहते हैं।                                                   |
| (च) सुगर चारकोल का प्रयोग गन्ने के रस को रंगहीन करने में करते हैं।                         |
| 129                                                                                        |

(छ) लैम्प ब्लैक में 98-99% कार्बन प्राप्त होता है।

### 4. संक्षेप में उत्तर दीजिए-

- (क) पेट्रोल को तरल सोना क्यों कहते हैं?
- (ख) लैम्प ब्लैक क्या होता है?
- (ग) पेट्रोलियम गैस किन गैसों का मिश्रण है?
- (घ) पेट्रोल को जीवाश्म ईंधन क्यों कहते हैं?
- (ङ) हाइड्रोकार्बन यौगिक कितने प्रकार के होते हैं?
- (च) मेथेन को ''मार्श गैस'' क्यों कहते हैं?
- (छ) हीरा तथा ग्रेफाइट के गुणों की तुलना कीजिए।
- (ज) रॉकेट ईंधन के दो उदाहरण दीजिए।
- (झ) प्रकृति में कार्बन किन अपररूपों में पाया जाता है?

#### 5. निम्नलिखित प्रश्नों के उत्तर दीजिए-

- (क) ईंधन क्या है? ईंधन का वर्गीकरण उदाहरण सहित दीजिए।
- (ख) ग्रेफाइट की संरचना को सचित्र समझाइए।
- (ग) कार्बन के क्रिस्टलीय व अक्रिस्टलीय रूपों को संक्षेप में समझाइए।
- (घ) कार्बन के अक्रिस्टलीय अपररूप को उदाहरण सहित समझाइए।
- (ङ) जन्तु चारकोल एवं सुगर चारकोल में क्या अन्तर है? दोनों के उपयोग समझाइए।

### 6. कारण बताइए—

- (क) जब साबुन को जल में डाला जाता है तो मिसेल का निर्माण क्यों होता है? क्या एथेनॉल जैसे दूसरे विलायकों में भी मिसेल का निर्माण होगा?
- (ख)कठोर जल को साबुन से उपचारित करने पर झाग के निर्माण को समझाइए।
- (ग) क्यों जलते हुए पदार्थ ज्वाला उत्पन्न करते हैं अथवा नहीं करते हैं क्यों
- (घ) कार्बन में शृंखलन की प्रक्रिया पाई जाती है क्यों?
- (ङ) कार्बन के यौगिक बड़ी संख्या में पाए जाते हैं? इसे कारण सहित समझाइए।
- (च) संतृप्त एवं असंतृप्त हाइड्रोकार्बन में अन्तर कारण सहित समझाइए।

#### 7. प्रोजेक्ट कार्य-

(क) मिट्टी की गोलियों में छेंद करके एवं माचिस की तीली की मदद से मीथेन, इथेन, प्रोपेन, ब्यूटेन, पेंटेन को समझाइए।

इसके मॉडल बनाकर त्रिवीमीय संरचना स्पष्ट कीजिए।

(ख)साबुन, शैंपू के घोल का परीक्षण लाल एवं लिटमस पत्र की सहायता से करके इसकी प्रकृति समझाइए। (ग) कपड़े की गन्दगी को साबुन के घोल से साफ करके मैल को कपड़े से दूर करने की प्रक्रिया को घर पर करके

# इकाई - 7 असंक्रामक रोग/अनियमित जीवन शैली से उत्पन्न रोग ( मधुमेह, उक्त रक्त चाप, दिल की बीमारियाँ )

इस इकाई को पढ़ने से निम्नलिखित की जानकारी प्राप्त होगी-

- असंक्रामक योग क्या होते हैं।
- अनियमित जीवन शैली किसे कहते हैं?
- मधुमेह रोग—जानकारी, लक्षण, रोकथाम (बचाव) कारण, सावधानियाँ
- हृदय रोग—विभिन्न प्रकार के रोग
- उच्च रक्त चाप—कैसे होता है, बचाव, रोकथाम

हम जानते हैं कि सार्थक एवं सुखी जीवन के लिए उत्तम स्वास्थ्य का होना आवश्यक है। यह भी जानते हैं कि हमारे रहन-सहन के तौर-तरीकों का तथा पर्यावरण का असर हमारे स्वास्थ्य पर पड़ता है। बहुत पहले मनुष्य बीमारियों को ईश्वर का प्रकोप मानता था। परंतु अनुभव एवं शिक्षा से उसे यह एहसास हुआ कि बीमारियों के कारणों की रोकथाम से अच्छा स्वास्थ्य बरकरार रखा जा सकता है। इसके लिए कई बातों की आवश्यकता होती है, जिनमें प्रमुख हैं—स्वच्छ वायु एवं धूप, स्वच्छ पेयजल, स्वच्छ शौचालय, संतुलित भोजन, स्वास्थ्यकर आवास, यथेष्ट कपड़े, स्वास्थ्यप्रद वातावरण, बीमारियों से सुरक्षा, सामाजिक एवं आर्थिक सुरक्षा की भावना तथा सौहाईपूर्ण सामाजिक वातावरण। यह आवश्यक है कि हम सभी को उन कारणों का पता होना चाहिए जो हमारे स्वास्थ्य को प्रभावित करते हैं। अतः शरीर के नीरोग होने, सभी शरीरांगों और अंगतंत्रों को सुचारू रूप से काम कर सकने और मानसिक तनाव से मुक्त रहने की स्थिति को स्वास्थ्य कहते हैं।

### अच्छा स्वास्थ्य क्या है?

अच्छा स्वास्थ्य का अर्थ अलग-अलग लोगों के लिए अलग-अलग है। जैसे—कोयले के खदान में काम करनेवाले मजदूर के लिए अच्छे स्वास्थ्य का अर्थ है ज्यादा शारीरिक श्रम करना और एक दफ्तर या कार्यालय जानेवाले व्यक्ति के लिए अच्छा स्वास्थ्य का अर्थ है दिमाग की चुस्ती, तािक वह अच्छे लोगों के साथ ठीक से व्यवहार कर सके, सही निर्णय ले सके। सामान्यतः एक व्यक्ति का स्वास्थ्य अच्छा तब है जब वह सभी प्रकार की बीमारियों से मुक्त हो एवं शारीरिक या मानसिक सभी कार्य प्रभावी ढंग से करता हो। विश्व स्वास्थ्य संगठन (WHO) के अनुसार स्वास्थ्य की परिभाषा इस प्रकार है—"वह स्थित जिसमें पूर्ण शारीरिक, मानसिक और सामाजिक संपन्नता हो, न कि केवल बीमारियों या पीड़ा का न होना।"

एक स्वस्थ्य मनुष्य का शरीर सभी मौसम और परिस्थितियों के परिवर्तन के अनुसार अपने-आपको बदल सकता है। वह तनाव को भी अच्छी तरह झेल सकता है। जीवन का भरपूर आनंद उठा सकता है।

#### मानव रोग

साधारणतया रोग हम उसे कहते हैं जिसके शरीर में हो जाने पर स्वास्थ्य बिगड़ जाता है अथवा जब शरीर की स्वाभाविक या सामान्य क्रियाओं (normal activities) पर विपरीत प्रभाव पड़ता है। मनुष्य को होनेवाले रोग कई तरह के होते हैं, जैसे—

- (i) शरीर के आंतरिक कारणों से होनेवाले रोग
- (ii) बाहरी कारणों से होनेवाले रोग

ज्यादातर रोगों में कोई अंग या अंगतंत्र अपना सामान्य कार्य बंद कर देता है। इसका कारण या तो उस अंग या अंगतंत्र में दोष या दूसरे अंगों से प्राप्त गलत सूचनाएँ हो सकती हैं। ऐसी किसी भी अवस्था में आंतरिक दोष होता है। ऐसे रोग जो किसी अंग के कुपोषण (malfunction) या अन्य अंग से गलत या अधूरी सूचना मिलने से होते हैं, उन्हें कार्बनिक या उपापचयी (metabolic) रोग कहते हैं। मधुमेह एक ऐसा कार्बनिक रोग है जिसमें अग्न्याशय (पैन्क्रियाज) कार्बोहाइड्रेट को उपापचय (metabolise) करने के लिए आवश्यक इन्सुलिन से कम इन्सुलिन स्नावित करते हैं।

अंग या अंगतंत्र बाहरी कारणों से भी सामान्य कार्य करना बंद कर देते हैं। उदाहरण के लिए, भोजन में आयोडीन की कमी थाइरॉइड ग्रंथि के सामान्य कार्य में बाधा उत्पन्न करता है। कुपोषण रोग उत्पन्न करने का बाहरी कारण है और वातावरण में मौजूद प्रदूषण भी रोग उत्पन्न करने के बाहरी कारण हैं, जो श्वसन तंत्र को प्रभावित करते हैं। शराब, तंबाकू और मादक द्रव रोग के कुछ अन्य बाहरी कारण हैं, जो कई अंगतंत्रों को प्रभावित करते हैं। जीवाणु, विषाणु, परजीवी इत्यादि रोग उत्पन्न करने के अन्य बाहरी कारण हैं।

कुछ बाहरी कारण, जैसे—अत्यधिक गर्मी या सर्दी या चोट भी अंगतंत्रों को प्रभावित करके उनके सामान्य कार्य में बाधा उत्पन्न करते हैं। परंतु हम हृदय स्ट्रोक या हड्डी के टूटने के रोग नहीं मानते हैं। रोगों को बाँटने के अन्य तरीके भी हैं, इसके अंतर्गत रोग की दो मुख्य श्रेणियाँ हैं—संक्रामक एवं असंक्रामक रोग।

क्रिया विधि—प्रशिक्षक प्रशिक्षार्थी से प्रश्न करेंगे :

- किसी संक्रामक रोग के नाम बताइये।
- संक्रामक रोग किसे कहते हैं?
- 1. संक्रामक रोग (Communicable diseases)—ऐसे रोग जो प्रत्यक्ष या परोक्ष रूप से एक व्यक्ति से दूसरे व्यक्ति को संक्रमित हो सकते हैं उन्हें संक्रामक रोग कहते हैं। सूक्ष्मजीव से होनेवाले रोग संक्रामक होते हैं। सूक्ष्मजीव रोगी के शरीर में वृद्धि करते हैं, संख्या में बढ़ते हैं और शरीर को रोग का आश्रयक्षेत्र बना देते हैं। रोगी से अन्य स्वस्थ व्यक्ति को रोग आसानी से संक्रमित हो सकता है, जैसा कि क्षयरोग, हैजा और इंफ्लुएंजा में होता है। कुछ रोग वाहक (agent)

के द्वारा भी फैल सकता है, जैसे—मलेरिया फाइलेरिया एवं कालाजार इत्यादि।

2. असंक्रामक रोग (Noncommunicable diseases)—ऐसे रोग जो प्रत्यक्ष या परोक्ष रूप से एक व्यक्ति से दूसरे व्यक्ति को संक्रमित नहीं हो सकते हैं उसे असंक्रामक से कहते हैं। आंतरिक कारकों से होनेवाले रोग, जैसे—हॉरमोन की गड़बड़ी और ऐलर्जी असंक्रामक रोग है। कुपोषण एवं व्यसनजनित पदार्थों से होनेवाले रोग भी असंक्रामक होते हैं। इसके अतिरिक्त अनियमित जीवन शैली से भी असंक्रामक रोग होते हैं। जिसमें मुख्य है—

### मधुमेह (डायबिटीज़)

उक्त रक्तचाप (हाई ब्लड प्रेशर)

#### क्रियाविधि-

प्रशिक्षक प्रशिक्षुओं से निम्नलिखित प्रश्न करें—

- 1. आप प्रातः कितने बजे उठते हैं?
- 2. नित्य क्रिया के उपरान्त आप क्या करते हैं?
- रात्रि में भोजन कितने बजे करते हैं?
- 4. दोपहर के भोजन में आप क्या खाते हैं?
- 5. आप अपनी दैनिक क्रियायें बताइये?
- पौष्टिक आहार किसे कहते हैं?

उक्त सभी प्रश्नों के विभिन्न उत्तर प्राप्त होंगे जैसे प्रातः काल में न उठ पाना, समय से भोजन न करना, पौष्टिक भोजन करना जैसे फास्ट फूड खाना, कार्बोहाइड्रेट अधिकता में लेना, शारिरिक श्रम न करना, व्यायाम न करना, एक स्थान पर ही बैठ कर सभी कार्य करना, योग न करना, बार-बार भोजन करना, गरिष्ठ भोजन करना आदि जिससे हमारे शरीर का पाचन तन्त्र भली प्रकार से कार्य नहीं करता है या फिर उस पर अधिक दबाव पड़ता है। इंसुलिन कार्बोहाइड्रेट को पचाने का कार्य करता है कभी भी ये शरीर में कम मात्रा में बनता है जिससे हाइपरग्लीसिमिया (मधुमेह) रोग हो जाता है अतः रक्त में शर्करा की मात्रा बढ़ जाती है। इसके अतिरिक्त अनियमित जीवन शैली के कारण हमारे रक्त दाब पर भी प्रभाव पड़ता है आवश्यकता से अधिक भोजन करना, वसा युक्त भोजन करने से कोलेस्ट्राल बढ़ता है और हृदय रोग होने की सम्भावना बढ़ जाती है अतः नियमित भोजन व नियमित व्यायाम या नियमित जीवन जीने से हम असंक्रामक बीमारियाँ जैसे मधुमेह या उक्त रक्त चाप से बचे रह सकते हैं। आइये जाने मधुमेह व उच्च रक्त चाप क्या होते हैं इनके होने के कारण क्या है कैसे इनसे बचा जा सकता है आदि के बारे में जानकारी प्राप्त करेंगे।

#### उच्च रक्त शर्करा

### मधुमेह क्या है-

शरीर में इंसुलिन की कमी होने पर यकृत कोशिकाओं में ग्लूकोज को ग्लाइकोजन में परिवर्तित करने एवं संग्रह करने

की क्षमता कम हो जाती है। परिणामस्वरूप रुधिर में ग्लूकोस की सान्द्रता बढ़ जाती है। हाइपरग्लीसीमिया कहते हैं एवं जब मूत्र में ग्लूकोस की मात्रा 300-500 mg प्रति 100 ml हो जाती है तो इस बीमारी को मधुमेह (diabetes mellitus) कहते हैं।

आज विश्व में यदि सर्वे किया जाये तो प्रत्येक तीसरा व्यक्ति मधुमेह से ग्रसित है क्योंकि मधुमेह होने का प्रमुख कारण अनियमित जीवन शैली है।

#### मधुमेह (Diabetes)

मधुमेह रोग सामान्यतः बहुत लोगों में पाया जाता है। भारत में यह बहुत अधिक मिलता है। मधुमेह दो प्रकार का होता है।

- (1) डायाबिटीज मैलिटस तथा (2) डायाबिटीज इन्सिपिडस
- 1. डायाबिटीज मैलिटस (Diabetes Mellitus)—इस रोग में रुधिर में शर्करा की अतिरिक्त मात्रा उपस्थित होती है तथा मूत्र के साथ बाहर निकलती है। इसके सामान्य लक्षण निम्न प्रकार से हैं:
  - 1. मूत्र में शर्करा की उपस्थिति (ग्लाइकोसूरिया)
  - 2. रुधिर में शर्करा की अधिक मात्रा (हाइपरग्लाइसीमिया)।
  - 3. कई बार मूत्र के लिए जाना।
  - 4. अधिक भूख एवं प्यास लगना।
  - 5. शरीर का वजन कम होना।
  - कमजोरी महसूस करना।

इस रोग में इन्सुलिन की कमी के कारण शरीर में रुधिर की शर्करा का पूर्ण उपापचय नहीं हो पाता। इसी कारण रुधिर में शर्करा की मात्रा अधिक रहती है और अन्त में मूत्र के साथ बाहर निकलने लगती है। दीर्घकालीन होने पर इसका नेत्रों, वृक्कों, हृदय व टांगों व प्रतिकूल प्रभाव पड़ता है। यह रोग वंशागत भी हो सकता है। इन्सुलिन के इंजेक्शन द्वारा तथा मधुमेह के रोगियों को अधिक स्टार्च एवं शर्करा वाले खाद्य पदार्थ जैसे मिठाइयां, शर्करा, आलू, चावल व गेहूं आदि का परहेज कराकर ही इसका उपचार संभव है।

इन्सुलिन हॉर्मोन की खोज फ्रैड्रिक बेन्टिंग तथा चार्ल्स **बैस्ट** ने 1921 में की थी। जेनेटिक इंजीनियरिंग के क्षेत्र में हुई प्रगति के कारण जीवाणु के जीन-कोश में मनुष्य के इन्सुलिन को पुनः स्थापित करके जीवाणुओं द्वारा मनुष्य के इन्सुलिन का संश्लेषण सम्भव हो गया है।

2. डायाबिटीज इन्सिपडिस (Diabetes Inspidus)—यह रोग बहुत कम होता है। इस रोग में व्यक्ति दिनभर में 30-40 लिटर तक मूत्र निकालता है किन्तु इसमें शर्करा नहीं होती। यह रोग पिट्यूटरी ग्रन्थि की पश्च पालि द्वारा स्नावित हॉर्मोन (वासोप्रैसिन) के श्राव में अनियमितता के कारण उत्पन्न होता है।

आइये जाने इंसुलिन क्या है एवं कहां से प्राप्त होती है इसकी कमी से कौन कौन से रोग हो जाते हैं। इंसुलिन अग्न्याशय (Pancreas) में पाया जाता है।

### अग्न्याशय या पैंक्रियास (PANCREAS)

लैंगरहैंस की द्वीपिकाएं (Islets of Langerhans)—अग्न्याशय मुख्यतः एक पाचक ग्रंथि है जो अग्न्याशयिक रस स्नावित करती है किन्तु इसकी पालियों के बीच के संयोजी ऊतक में कोशिकाओं के गुच्छे स्थित होते हैं। इन्हीं कोशिका समूहों को लैंगरहैंस की द्वीपिकाएं (islets of Langerhans) कहते हैं। इनमें निम्न प्रकार की कोशिकाएं होती हैं:

- 1.  $\beta$ -कोशिकायें या **बीटा कोशिकायें इन्सुलिन** बनाती हैं। ये 70% होती हैं।
- 2.  $\alpha$ -कोशिकाओं या **एल्फा कोशिकायें ग्लुकेगोन** हॉर्मोन का स्नाव करती हैं। ये 20% होती हैं।



लैंगरहैन्स की एक द्वीपिका का रेखाचित्र।

- 3. D-कोशिकायें या **डेल्टा कोशिकायें सोमेटोस्टेटिन** हॉर्मोन मुक्त करती हैं। ये -5% होती हैं।
- 4. PP या F कोशिकायें

आंत भोजन के पाचन के लिए एंजाइमों के श्राव एवं रुधिर परिसंचरण में हॉर्मोन के श्राव के कारण अग्न्याशय को बहिस्रावी पाचन ग्रंथि एवं अंतस्त्रावी ग्रंथि कहते हैं।

### 1. इन्सुलिन (Insulin)

शरीर में कार्बोहाइड्रेट के उपापचय में इसकी महत्वपूर्ण भूमिका होती है :



136

- 1. यह कार्बोहाइड्रेट के पाचन से बने ग्लूकोस को ग्लाइकोजन में बदल देती है और यकृत एवं पेशियों में संग्रहित करती है।
  - 2. ग्लूकोस के ऑक्सीकरण से ऊर्जा विमुक्त करती है।
  - 3. रुधिर में ग्लूकोस की निश्चित मात्रा बनाये रखती है।
  - 4. कोशिकाओं की आधारी उपापचयी दर (Basal Metabolic Rate : BMR) को प्रभावित करती है।
  - 5. वसा ऊतकों में वसा संश्लेषण अर्थात **लाइपोजेनेसिस** (lipogenesis) को प्रभावित करती है।

### इन्सुलिन की अनियमितता के रोग (Diseases caused by Insulin Irregularity)

- (A) इंसुलिन के अल्पश्राव से उत्पन्न रोग (Diseases caused due to Hypoinsulinism)—इन्सुलिन के अल्पश्राव से निम्न रोग हो जाते हैं :
- 1. **हाइपरग्लाइसीमिया** (Hyperglycemia)—शरीर में इंसुलिन की कमी होने पर यकृत कोशिकाओं में ग्लूकोस की ग्लाइकोजन में परिवर्तित करने एवम् संग्रह करने की क्षमता कम हो जाती है। परिणामस्वरूप रुधिर में ग्लूकोस की सान्द्रता बढ़ जाती है। इसे हाइपरग्लाइसीमिया (hyperglycemia) कहते हैं।
- 2. ग्लाइकोसूरिया (Glycosuria)—ग्लूकोस की अतिरिक्त मात्रा मूत्र के साथ बाहर निकलने लगती है। इसे मूत्र का ग्लाइकोसूरिया (glycosuria) कहते हैं।
- 3. मधुमेह (Diabetes)—जब मूत्र में ग्लूकोस की मात्रा 300-500 mg प्रति 100 ml हो जाती है तो इस बीमारी को मधुमेह (diabetes mellitus) कहते हैं।
  - 4. पोलीयूरिया (Polyuria)—मूत्र में ग्लूकोस के उत्सर्जन से बहुमूत्र या पॉलियूरिया (polyurea) हो जाता है।
- 5. **पोलीडिप्सिया** (Polydipsia)—अधिक पानी के शरीर से निकलने के कारण **निर्जलीकरण** (dehydration) हो जाता है और प्यास बहुत लगती है।
- 6. कीटोसिस (Ketosis)—कोशिकायें प्रोटीन व वसा को ऊर्जा के लिये उपयोग में लाती हैं। प्रोटीन की कमी होने पर रोगी कमजोर हो जाता है तथा वसा के विखंडन से कीटोन बॉडीज (ketone bodies) रुधिर में एकत्रित हो जाती है। इसे कीटोसिस (ketosis) कहते हैं। कीटोन बॉडीज से रुधिर की अम्लीयता बढ़ती है, बेहोशी रहने लगती है और अंत में मृत्यु भी हो सकती है।
- ( **B** ) **हाइपोग्लाइसीमिया** (Hypoglycemia)—इस अवस्था में शरीर की कोशिकायें रुधिर से अधिक ग्लूकोस लेने लगती हैं। इसके फलस्वरूप तंत्रिका कोशिकाओं तथा रेटिना की कोशिकाओं को कम मात्रा में ऊर्जा उपलब्ध होती है। अतः जनन क्षमता एवं दृष्टिज्ञान पर प्रतिकूल प्रभाव पड़ता है। व्यक्ति को अधिक थकावट एवं अकड़न महसूस होती है।

**इन्सुलिन आघात** (Insulin Stroke)—उपवास या शारीरिक परिश्रम के समय इन्सुलिन शरीर में प्रविष्ट कराने पर

भी मूर्छा की अवस्था हो जाती है। इसे **इन्सुलिन आघात** (insulin stroke) कहते हैं।

मधुमेह पूरे विश्व में प्रचुरता से पाया जाने वाला एवं रोग हैं जिसके कारण इसके प्रति जागरुक करने हेतु मधुमेह दिवस 14 नवम्बर को मनाया जाता है। आइये जाने इसके कौन-कौन से लक्षण हैं—

#### लक्षण

मधुमेह होने के कई लक्षण रोगी को स्वयं अनुभव होते हैं। इनमें बार-बार पेशाब आते रहना (रात के समय भी), त्वचा में खुजली होना, धुंधला दिखना, थकान और कमजोरी महसूस करना, पैरों का सुन्न होना, प्यास अधिक लगना, कटान/घाव भरने में समय लगना, हमेशा भूख महसूस करना, वजन कम होना और त्वचा में संक्रमण होना आदि प्रमुख हैं।

उपरोक्त लक्षणों के साथ-साथ यदि त्वचा का रंग, कांति या मोटाई में परिवर्तन दिखे, कोई चोट या फफोले ठीक होने में सामान्य से अधिक समय लगे, कीटाणु संक्रमण के प्रारंभिक चिह्न जैसे कि लालीपन, सूजन, फोड़ा या छूने से त्वचा गरम हो, उरुमूल, योनि या गुदा मार्ग, बगलों या स्तनों के नीचे तथा अंगुलियों के बीच खुजलाहट हो, जिससे फफूंदी संक्रमण की संभावना का संकेत मिलता है या कोई न भरने वाला घाव हो तो रोगी को चाहिये कि चिकित्सक से शीघ्र संपर्क करे।

मधुमेह रोग के प्रमुख लक्षण ये हैं---

- रोगी का मुँह खुश्क रहना तथा अत्यधिक प्यास लगना।
- भूख अधिक लगना।
- अधिक भोजन करने पर भी दुर्बल होते जाना।
- बिना कारण रोगी का भार कम होना, शरीर में थकावट के साथ-साथ मानसिक चिन्तन एवं एकाग्रता में कमी होना।
  - मृत्र बार-बार एवं अधिक मात्रा में होना तथा मृत्र त्यागने के स्थान पर मृत्र की मिठास के कारण चीटियाँ लगना।
  - शरीर में व्रण अथवा फोड़ा होने पर उसका घाव जल्दी न भरना।
  - शरीर पर फोड़े-फुँसियाँ बार-बार निकलना।
  - शरीर में निरन्तर खुजली रहना एवं दूरस्थ अंगों का सुन्न पड़ना।
  - नेत्र की ज्योति बिना किसी कारण के कम होना।
  - पुरुषत्वशक्ति में क्षीणता होना।
  - स्त्रियों में मासिक स्नाव में विकृति अथवा उसका बन्द होना।

#### कारण

हमारे भोजन में कार्बोहाइड्रेट एक प्रमुख तत्व है, यही कैलोरी व ऊर्जा का स्रोत है। वास्तव में शरीर के 60 से

70% कैलोरी इन्हीं से प्राप्त होती है। कार्बोहाइड्रेट पाचन तंत्र में पहुंचते ही ग्लूकोज के छोटे-छोटे कणों में बदल कर रक्त प्रवाह में मिल जाते हैं इसलिए भोजन लेने के आधे घंटे भीतर ही रक्त में ग्लूकोज का स्तर बढ़ जाता है तथा दो घंटे में अपनी चरम सीमा तक पहुंच जाता है।

दूसरी ओर शरीर तथा मस्तिष्क की सभी कोशिकाएं इस ग्लूकोज का उपयोग करने लगती हैं। ग्लूकोज छोटी रक्त निलकाओं द्वारा प्रत्येक कोशिका में प्रवेश करता है, वहां इससे ऊर्जा प्राप्त की जाती है। यह प्रक्रिया दो से तीन घंटे के भीतर रक्त में ग्लूकोज के स्तर को घटा देती है। अगले भोजन के बाद यह स्तर पुनः बढ़ने लगता है। सामान्य स्वस्थ व्यक्ति में भोजन से पूर्व रक्त में ग्लूकोज का स्तर 70 से 100 मिग्रा./डे.ली. रहता है। भोजन के पश्चात् यह स्तर 120-140 मि.ग्रा./डे.ली. हो जाता है तथा धीरे-धीरे कम होता चला जाता है।

मधुमेह में इंसुलिन की कमी के कारण कोशिकाएं ग्लूकोज का उपयोग नहीं कर पातीं क्योंकि इंसुलिन के अभाव में ग्लूकोज कोशिकाओं में प्रवेश ही नहीं कर पाता। इंसुलिन एक द्वार रक्षक की तरह ग्लूकोज को कोशिकाओं में प्रवेश करवाता है ताकि ऊर्जा उत्पन्न हो सके। यदि ऐसा न हो सके तो शरीर की कोशिकाओं के साथ-साथ अन्य अंगों को भी रक्त में ग्लूकोज के बढ़ते स्तर के कारण हानि होती है। यदि स्थिति उस प्यासे की तरह है जो अपने पास पानी होने पर भी उसे चारों ओर ढूंढ़ रहा है।

इन द्वार रक्षकों (इंसुलिन) की संख्या में कमी के कारण रक्त में ग्लूकोज का स्तर बढ़ कर 140 मि.ग्रा./डे.ली. से भी अधिक हो जाए तो व्यक्ति मधुमेह का रोगी माना जाता है। असावधान रोगियों में यह स्तर बढ़ कर 500 मि.ग्रा./ डे.ली. तक भी जा सकता है।

मधुमेह रोग जटिलताओं में भरा है। सालों साल यदि रक्त में ग्लूकोज का स्तर बढ़ा रहे तो प्रत्येक अंग की छोटी रक्त निलकाएं नष्ट हो जाती हैं जिसे माइक्रो एंजियोपैथी कहा जाता है। तंत्रिकातंत्र की खराबी 'न्यूरोपैथी, गुर्दों की खराबी 'नेफरोपैथी' व नेत्रों की खराबी 'रेटीनोपैथी' कहलाती है। इसके अलावा हृदय रोगों का आक्रमण होते भी देर नहीं लगती।

### मधुमेह के प्रकार

डायबिटीज मेलाइट्स को निम्नलिखित वर्गों में बांटा जा सकता है—

- आई.डी.डी.एम. इंसुलिन डिपेंडेंट डायबिटीज मेलाइट्स (इंसुलिन, आश्रित मधुमेह) टाइप-I
- 2. एन.आई.डी.डी.एम. नॉन इंसुलिन डिपेंडेंट डायबिटीज मेलाइट्स (इंसुलिन अनाश्रित मधुमेह) टाइप-II
- 3. एम.आर.डी.एम. मालन्यूट्रिशन रिलेटिड डायबिटीज मेलाइट्स (कुपोषण जनित मधुमेह)
- 4. आई.जी.टी. (इंपेयर्ड ग्लूकोज टोलरेंस)
- 5. जैस्टेशनल डायबिटीज
- सैकैंडरी डायबिटीज

**टाइप-**I (इंसुलिन आश्रित मधुमेह)

टाइप-I मधुमेह में अग्न्याशय इंसुलिन नामक हार्मोन नहीं बना पाता जिससे ग्लूकोज शरीर की कोशिकाओं को ऊर्जा नहीं दे पाता। इस टाइप में रोगी को रक्त में ग्लूकोज का सतर सामान्य रखने के लिए नियमित रूप से इंसुलिन के इंजेक्शन लेने पड़ते हैं। इसे 'ज्यूविनाइल ओनसैट, डायबिटीज' के नाम से भी जाना जाता है। यह रोग प्रायः किशोरावस्था में पाया जाता है। इस रोग में ऑटोइम्यूनिटी के कारण रोगी का वजन कम हो जाता है।

टाइप-II (इंसुलिन अनाश्रित मधुमेह)

लगभग 90% मधुमेह रोगी टाइप-II डायबिटीज के ही रोगी हैं। इस रोग में अग्न्याशय इंसुलिन बनाता तो है परंतु इंसुलिन कम मात्रा में बनती है, अपना असर खो देती है या फिर अग्नाशय से ठीक समय पर छूट नहीं पाती जिससे रक्त में ग्लूकोज का स्तर अनियंत्रित हो जाता है। इस प्रकार के मधुमेह में जैनेटिक कारण भी महत्वपूर्ण हैं। कई परिवारों में यह रोग पीढ़ी दर पीढ़ी पाया जाता है। यह वयस्कों तथा मोटापे से ग्रस्त व्यक्तियों में धीरे-धीरे अपनी जड़ें जमा लेता है।

अधिकतर रोगी अपना वजन घटा कर, नियमित आहार पर ध्यान देकर तथा औषधि लेकर इस रोग पर काबू पा लेते हैं।

### एम.आर.डी.एम. (कुपोषण जनित मधुमेह)

भारत जैसे विकासशील देश में 15-30 आयु वर्ष के किशोर तथा किशोरियां कुपोषण से ग्रस्त हैं। इस दशा में अग्नाशय पर्याप्त मात्रा में इंसुलिन नहीं बना पाता। रोगियों को इंसुलिन के इंजेक्शन देने पड़ते हैं। मधुमेह के टाइप-I रोगियों के विपरीत इन रोगियों में इंसुलिन के इंजेक्शन बंद करने पर कीटोएसिडोसिस विकसित नहीं हो पाता।

### आई.जी.टी. (इंपेयर्ड ग्लूकोज टोलरेंस)

जब रोगी को 75 ग्राम ग्लूकोज का घोल पिला दिया जाए और रक्त में ग्लूकोज कास्तर सामान्य तथा मधुमेह के बीच हो जाए तो यह स्थिति आई.जी.टी. कहलाती है। इस श्रेणी के रोगी में प्रायः मधुमेह के लक्षण दिखाई नहीं देते परंतु ऐसे रोगियों में भविष्य में मधुमेह हो सकता है।

### जैस्टेशनल डायबिटीज (गर्भावस्था के दौरान)

गर्भावस्था के दौरान होने वाली मधुमेह जैस्टेशनल डायबिटीज कहलाती है। 2-3% गर्भावस्था में ऐसा होता है। इसके दौरान गर्भावस्था में मधुमेह से संबंधित जटिलताएं बढ़ जाती हैं तथा भविष्य में माता तथा संतान को भी मधुमेह होने की आशंका बढ़ जाती है।

#### सेकेंडरी डायबिटीज

जब अन्य रोगों के साथ मधुमेह हो तो उसे सेकेंडरी डायबिटीज कहते हैं। इसमें अग्नाशय नष्ट हो जाता है जिससे इंस्**लिन का स्नाव असामान्य हो जाता है,** जैसे—

140

### रक्त शर्करा स्तर

मधुमेह में और सामान्यतया भी रक्त-शर्करा स्तर को सामान्य बनाये रखना आवश्यक होता है। यदि रक्त में शर्करा का स्तर लंबे समय तक सामान्य से अधिक बना रहता है तो उच्च रक्त ग्लूकोज अधिक समय के बाद विषैला हो जाता है। अधिक समय के बाद उच्च ग्लूकोज, रक्त निलकाओं, गुर्दे, आंखों और स्नायुओं को खराब कर देता है जिससे जिटलताएं पैदा होती है और शरीर के प्रमुख अंगों में स्थायी खराबी आ सकती है। स्नायु की समस्याओं से पैरों अथवा शरीर के अन्य भागों की संवेदना चली जा सकती है। रक्त निलकाओं की बीमारी से हृदयाघात हो सकता है, पक्षाघात और संचरण की समस्याएं पैदा हो सकती है। आंखों की समस्याओं में आंखों की रक्त निलकाओं की खराबी (रेटीनोपैथी), आंखों पर दबाव (ग्लूकोमा) और आंखों के लेंस पर बदली छाना (मोतियाबिंद) हो सकते हैं। गुर्दे की बीमारी का कारण, गुर्दा रक्त में से अपशिष्ट पदार्थ की सफाई करना बंद कर देती है। उच्च रक्तचाप से हृदय को रक्त पंप करने में कठिनाई होती है।

मधुमेह होने से शरीर में अन्य नियमितताएं भी होने लगती है जैसे हृदय सम्बन्धी रोग, आँखों का रोग, गुर्दे का रोग आदि।

# मधुमेह में अन्य अनियमितताएं

#### रक्तचाप

### मुख्य लेख : रक्तचाप

हृदय धड़कने से रक्त नित्काओं में रक्त पंप होता है और उनमें दबाव पैदा होता है। किसी व्यक्ति के स्वस्थ होने पर रक्त नित्काएं मांसल और लचीली होती है। जब हृदय उनमें से रक्त संचार करता है तो वे फैलती है। सामान्य स्थितियों में हृदय प्रति मिनट 60 से 80 की गित से धड़कता है। हृदय की प्रत्येक धड़कन के साथ रक्त चाप बढ़ता है तथा धड़कनों के बीच हृदय शिथिल होने पर यह घटता है। प्रत्येक मिनट पर आसन, व्यायाम या सोने की स्थिति में रक्त चाप घट-बढ़ सकता है किंतु एक अधेड़ व्यक्ति के लिए यह 130/80 एम एम एचजी से सामान्यतः कम ही होना चाहिए। इस रक्त चाप से कुछ भी ऊपर उच्च माना जाएगा।

उच्च रक्त चाप के सामान्यतः कोई लक्षण नहीं होता हैं; वास्तव में बहुत से लोगों को सालों साल रक्त चाप बना रहता है किंतु उन्हें इसकी कोई जानकारी नहीं हो पाती है। इससे तनाव, हतोत्साह अथवा अति संवेदनशीलता से कोई संबंध नहीं होता है। आप शांत, विश्रान्त व्यक्ति हो सकते हैं तथा फिर भी आपको रक्तचाप हो सकता है। उच्च रक्तचाप पर निंयत्रण न करने से पक्षाघात, दिल का दौरा, संकुलन हृदय गित रुकना या गुर्दे खराब हो सकते हैं। ये सभी प्राण घातक हैं। यही कारण है कि उच्च रक्तचाप को "निष्क्रिय प्राणघातक" कहा जाता है।

## कोलेस्ट्रोल

### मुख्य लेख : कोलेस्ट्रोल

शरीर में उच्च कोलेस्ट्रोल का स्तर होने से दिल का दौरा पड़ने का खतरा चार गुना बढ़ जाता है। रक्तधारा में अधिक कोलेस्ट्रोल होने से धमिनयों की परतों पर प्लेक (मोटी सख्त जमा) जमा हो जाती है। कोलेस्ट्रोल या प्लेक पैदा होने से धमिनयां मोटी, कड़ी और कम लचीली हो जाती है जिसमें कि हृदय के लिए रक्त संचारण धीमा और कभी-कभी रुक जाता है। जब रक्त संचार रुकता है तो छाती में दर्द अथवा कंठशूल हो सकता है। जब हृदय के लिए रक्त संचार अत्यंत कम अथ्वा बिल्कुल बंद हो जाता है तो इसका परिणाम दिल का दौरा पड़ने में होता है।

रक्त चाप और उच्च कोलेस्ट्रोल के अतिरिक्त यदि मधुमेह भी हो तो पक्षाघात और दिल के दौरे का खतरा 16 गुना बढ़ जाता है।

### मधुमेह के संग हृदय-धमनी रोग

- मध्मेह रोगियों में हृदय-रोग अपेक्षाकृत कम आयु में हो सकते हैं। दूसरा अटैक होने का खतरा सदैव बना रहता है।
- रजोनिवृत्ति के पूर्व महिलाओं में एस्ट्रोजन हार्मोन के कारण हृदय रोगों का खतरा पुरुषों की अपेक्षा कम होता है। पर मधुमेह प्रसित महिलाओं में यह सुरक्षा कवच निप्रभावी हो जाता है ओर इनके हृदय-रोग का खतरा पुरुषों के समकक्ष हो जाता है।
  - मधुमेह रोगियों में हृदय-धमनी रोग मौत का प्रमुख कारण है।
- मधुमेह रोगियों में हृदय-रोग का खतरा मधुमेह की अविध के साथ बढ़ता जाता है। इनमें हार्ट-अटैक ज्यादा गंभीर और घातक होता है। \*मधुमेह मरीजों में हार्ट-अटैक होने पर भी छाती में दर्द नहीं होता, क्योंकि दर्द का अहसास दिलाने वाला इनका स्नायु क्षतिग्रस्त हो सकता है। यह शांत हार्ट-अटैक कहलाता है।
  - मधुमेह रोगियों को एन्जाइना होने पर श्वास फूलने, चक्कर आने, हृदय गति अनियमित होने का खतरा रहता है।
- मधुमेह रोगियों में यदि रक्त का ग्लूकोज स्तर अत्यधिक बढ़ जाता है और रक्त में किरोन का स्तर भी बढ़ता
   है तो अचानक रक्त संचार की प्रणाली कार्य करना बंद कर देती है और उससे मोत हो सकती है।
- मधुमेह रोगियों में विभिन्न कारणों से रक्त वाहिनियों में एथ्रीमो स्कोरोसिस के बदलाव कम आयु में शुरू होकर तेजी से होते हैं।

मधुमेह, हृदय-रोग, उच्च रक्तचाप तीनों ही जिटल, गंभीर व घातक रोग हैं। रोगी का घनिष्ठ संबंध जीवन-शैली से तो है ही, साथ ही तीनों रोगों का आपस में भी घनिष्ठ संबंध होता है। एक रोग होने पर दूसरे रोगों का खतरा बढ़ जाता है। रोग गंभीर, घातक, अनियंत्रित, लाइलाज हो सकते हैं। अतः नियमित अंतराल में चिकित्सकीय परीक्षण करवायें, जिससे इन रोगों की शुरुआती अवस्था में ही पता लग सके।

#### प्रबंधन/बचाव

मधुमेह होने के कारण पैदा होने वाली जटिलताओं की रोकथाम के लिए नियमित आहार, व्यायाम, व्यक्तिगत स्वास्थ्य,

सफाई और संभावित इन्सुलिन इंजेक्शन अथवा खाने वाली दवाइयों (डॉक्टर के सुझाव के अनुसार) का सेवन आदि कुछ तरीके हैं।

- चिन्ता, तनाव, व्यय्रता से मुक्त रहें।
- तीन माह में एक बार रक्त शर्करा की जाँच करावें।
- भोजन कम करें, भोजन में रेशे युक्त द्रव्य, तरकारी, जौ, चने, गेहूँ, बाजरे की रोटी, हरी सब्जी एवं दही का प्रचुरमात्रा में सेवन करें। चना और गेहूँ मिलाकर उसके आटे की रोटी खाना बेहतर है। चना तथा गेहूँ का अनुपात 1:10 हो।
  - हल्का व्यायाम करें, शारीरिक परिश्रम करें अथवा प्रातः 4-5 कि.मी. घूमें।
  - मधुमेह पीड़ित मनुष्य नियमित एवं संयमित जीवन के लिये विशेष ध्यान रखें।
  - शर्करीय पदार्थों का सेवन बहुत सीमित करें।
  - स्थूल तथा अधिक भार वाले व्यक्ति अपना वजन कम रखने का प्रयत्न करें।
  - चरपरे एवं कषाय रसयुक्त आहार का विशेष सेवन करें।
- मैथुन मधुमेह के रोगियों के लिये वर्जित नहीं है। मैथुन से शरीर का व्यायाम होता है अतः इसे समय-समय पर करते रहना चाहिये।
  - दवाओं का सेवन चिकित्सक के परामर्श से ही करें।
- नित्य कुछ समय के लिये प्राणायाम अवश्य करना चाहिये। जहाँ तक संभव हो कुछ समय नंगे पैर जमीन पर अवश्य चलना, यदाकदा स्थान, जलवायु इत्यादि में भी बदलाव करें। शक्कर के स्तर की नियमित जाँच कराते रहें।

#### व्यायाम

व्यायाम से रक्त शर्करा स्तर कम होता है तथा ग्लूकोज का उपयोग करने के लिए शारीरिक क्षमता पैदा होती है। प्रतिघंटा 6 किमी. की गित से चलनेपर 30 मिनट में 135 कैलोरी समाप्त होती है जबिक साइकिल चलाने से लगभग 200 कैलोरी समाप्त होती है। मेथी दाने से डायबिटीज नियंत्रित हो जाती है। रात को 1 चम्मच मेथीदाना। गिलास गुनगुने पानी में भिगा दें। सुबह उठकर बिना कुल्ला किये मेथीदाना चबा-चबा कर खा लें और पानी को घूँट-घूँट कर पी लें। 2-3 महीने के अन्दर डायबिटीज पूरी तरह नियंत्रित हो जाता है।

मधुमेह के रोगियों को ''कपाल-भाति प्राणायाम'' करने से बहुत लाभ होता है।

### त्वचा की देख-भाल

मधुमेह के मरीजों को त्वचा की देखभाल करना अत्यावश्यक है। भारी मात्रा में ग्लूकोज से उनमें कीटाणु और फफूंदी लगने की संभावना बढ़ जाती है। चूंकि रक्त संचार बहुत कम होता है अतः शरीर में हानिकारक कीटाणुओं से बचने की क्षमता न के बराबर होती है। शरीर की सुरक्षात्मक कोशिकाएं हानिकारक कीटाणुओं को खत्म करने में असमर्थ होती है। उच्च ग्लूकोज की मात्रा में निर्जलीकरण (डी-हाइड्रेशन) होता है जिससे त्वचा सूखी हो जाती है तथा खुजली होने लगती है।

#### जीन थेरैपी

मधुमेह के लिए चल रहे शोधों में वैज्ञानिकों में जीन थेरैपी का सुझाव निकाला है। इसमें रोगी की शरीर में इंसुलिन बनाने वाली कोशिकाओं को स्वस्थ कोशिकाओं से यदि बदल दिये जाये तो यह कारगर सिद्ध हो सकता है। इसका प्रयोग एक रोगी चूहे पर किया और उसे स्वस्थ पाया।

प्रश्न- यदि मधुमेह हो तो आप शरीर की देखभाल कैसे करेंगे?

### देखभाल

मधुमेह रोगियों को अपने शरीर की स्वयं देखभाल करनी चाहिये। उन्हें चाहिये कि हल्के साबुन या हल्के गरम पानी से नियमित स्नान करे। अधिक गर्म पानी से न नहाएं और नहाने के बाद शरीर को भली प्रकार पोछें तथा त्वचा की सिलवटों वाले स्थान पर विशेष ध्यान दें। वहां पर अधिक नमी जमा होने की संभावना होती है। जैसा कि बगलों, उरुमूल, तथा उंगिलयों के बीच। इन जगहों पर अधिक नमी से फफूंदी संक्रमण की अधिकाधिक संभावना होती है। त्वचा सूची न होने दे। जब आप सूखी,



खुजलीदार त्वचा को रगड़ते हैं तो आप कीटाणुओं के लिए द्वार खोल देते हैं। पर्याप्त तरल पदार्थों को लें जिससे कि त्वचा पानीदार बनी रहे।

## घावों की देखभाल

समय-समय पर कटने या कतरने को टाला नहीं जा सकता है। मधुमेह की बीमारी वाले व्यक्ति को मामूली घावों पर विशेष ध्यान देने की आवश्यकता है ताकि संक्रमण से बचा जा सके। मामूली कटने और छिलने का भी सीधे उपचार करना चाहिए। उन्हें यथाशीघ्र साबुन और गरम पानी से धो डालना चाहिए और फिर आयोडीन युक्त अलकोहाल या प्रतिरोधी द्रवों को न लगाएं क्योंकि उनसे त्वचा में जलन पैदा होती है। केवल डॉक्टरी सलाहे के आधार पर ही प्रतिरोधी क्रीमों का प्रयोग करें। उन पर विसंक्रमित कपड़ा पट्टी या गाज से बांध कर जगह को सुरक्षित करें।



मधुमेह की जटिल अवस्था : पैर की तीन अंगुलियों में गैंगरीन

यदि बहुत अधिक कट या जल गया हो, त्वचा पर कहीं पर भी ऐसा लालीपन, सुजन, मवाद या दर्द हो जिससे कीटाणु संक्रमण की आशंका हो या रिंगवर्म, जननेंद्रिय में खुजली या फफूंदी संक्रमण के कोई अन्य लक्षण दिखें तो चिकित्सक से तुरंत संपर्क करें।

### पैरों की देखभाल

मधुमेह की बीमारी में रक्त में ग्लूकोज के उच्च स्तर के कारण स्नायु खराब होने से संवेदनशीलता जाती रहती है। पैरों की नियमित जांच करें, पर्याप्त रोशनी में प्रतिदिन पैरों की नजदीकी जांच करें। देखें कि कहीं कटान और कतरन, त्वचा में कटाव, कड़ापन, फफोले, लाल धब्बे और सूजन तो नहीं है। उंगिलयों के नीचे और उनके बीच देखना न भूलें। उनकी नियमित सफाई करें। हल्के साबुन से और गरम पानी से प्रतिदिन साफ करें व पैरों की उंगिलयों के नाखूनों को नियमित काटते रहें। पैरों की सुरक्षा के लिए जूते पहनें।

### मधुमेह संबंधी आहार

यह आहार भी एक स्वस्थ व्यक्ति के सामान्य आहार की तरह ही है, तािक रोगों की पोषण संबंधी पोषण आवश्यकता को पूरी की जा सके एवं उसका उचित उपचार किया जा सके। इस आहार में कार्बोहाइड्रेट की मात्रा कुछ कम है लेकिन भोजन संबंधी अन्य सिद्धांतों के अनुसार उचित मात्रा में है। मधुमेह संबंधी समस्त आहार के लिए जड़ एवं कंद, मिठाइयाँ, पुडिंग और चॉकलेट, तला हुआ भोजन, सूखे मेवे, चीनी, केला, चीकू, सीताफल आदि जैसे फल आदि से बचा जाना चाहिए।

आहार नमूना

| खाद्य सामग्री                | शाकाहारी भोजन (ग्राम में) | मांसाहारी भोजन (ग्राम में) |
|------------------------------|---------------------------|----------------------------|
| अनाज                         | 200                       | 250                        |
| दालें                        | 60                        | 20                         |
| हरी पत्तेदार सब्जियाँ        | 200                       | 200                        |
| फल                           | 200                       | 200                        |
| दूध (डेयरी का)               | 400                       | 200                        |
| तेल                          | 20                        | 20                         |
| मछली/चिकन-बगैर त्वचा का      | -                         | 100                        |
| अन्य सिब्जियाँ               | 200                       | 200                        |
| ये आहार आपको निम्न चीजें उपल | ब्ध कराता है-             |                            |
| कैलोरी                       | 1600                      |                            |

 प्रोटीन
 65
 ग्राम

 वसा
 40
 ग्राम

 कार्बोहाइड्रेट
 245
 ग्राम

जिस प्रकार वयस्कों में मधुमेह रोग होती है वैसे ही बच्चों में भी बहुत सामान्य बात हो गई है मधुमेह से ग्रसित होने का।

## बच्चों में डायिबटीज़ के लक्षण

एक समय था जब बच्चों को हर बीमारी से बचाने के लिए बहुत सावधानियां बरती जाती थी। लेकिन अब जीवन की भागदौड़ में बच्चे की सही तरह से देखभाल करना मुश्किल सा हो गया है। नतीजन, बच्चों की बीमारियां अपनी चपेट में ले रही हैं। डायबिटीज जहां पहले बड़े उम्र में ही हुआ करती थी वहीं अब बच्चों में भी डायबिटीज के लक्षण दिखाई देने लगे हैं। बच्चों का डायबिटीज से पीड़ित होने के कई कारण हैं। आइए जाने बच्चों में डायबिटीज के लक्षणों के बारे में।



- बच्चों में होने वाले डायबिटीज़ को जुवेनाइल डायबिटीज़ के नाम से जाना जाता है। ज्यादातर बच्चों में टाइप 1 डायबिटीज के लक्षण देखने को मिलते हैं। यह बीमारी बच्चों के शरीर में मेटाबॉलिज्म संबंधी विकार और इंसुलिन न बनने के कारण होती है।
- डायबिटीज के मरीजों को आमतौर पर मीठा खाने से मना किया जाता है और अधिक से अधिक पानी पीने की सलाह दी जाती है। बच्चें जब डायबिटीज से पीड़ित होते हैं तो उन्हें बार-बार बहुत प्यास लगती है।
  - बार-बार उल्टियां आना, पेशाब आना भी बच्चे में डायबिटीज के लक्षण है।
- लगातार बच्चे का वजन कम होना, थकान होना, बच्चे में कमजोरी आना, किसी काम में मन न लगना इत्यादि लक्षण होने से बच्चा डायबिटीज से पीड़ित हो सकता है।
- हालांकि बच्चों में इस बीमारी का पता लगाना मुश्किल होता है लेकिन लक्षणों की पहचान कर डॉक्टर से जांच कराने के बाद डायबिटीज का पता लगाया जा सकता है।
  - कई बार सही खान-पान न होने से भी बच्चे में डायबिटीज होने का खतरा रहता है।
- डायबिटीज अनेक प्रकार की हो सकती है। इनमें टाइप-1 डायबिटीज आमतौर पर युवाओं, बच्चों और किशोरों में होती है।
  - कई बार बच्चों में अधिक मोटापा बढ़ने से भी डायबिटीज हो सकती है।

डाक्टर से संपर्क कीजिए और अपने बच्चे के खाने-पीने का खास ध्यान रखिए। बच्चे को जंकफूड से दूर रखिए कार्बो... और मीठा कम खिलाइए। साथ ही कोका कोला जैसे पेय पदार्थों को बच्चों को मत पीने दीजिए। इससे आप अपने बच्चे में डायबिटीज को कंट्रोल कर सकते हैं।

#### • उच्च रक्त शर्करा

आइये जाने उच्च रक्त शर्करा क्या है? जब उक्त लक्षण हमारे शरीर में प्रगट हो या एहसास हो तो हमें अपना रक्त में शर्करा की प्रतिशत जाँच करानी चाहिये यदि रक्त शर्करा सामान्य से अधिक आती है तो उच्च रक्त शर्करा है। उच्च रक्त शर्करा का अर्थ है, रक्त में शर्करा, जिसे ग्लूकोज कहते हैं, का अत्यधिक मात्रा में मौजूद होना। उच्च रक्त शर्करा को हाइपरग्लाइसेमिया भी कहा जाता है। शरीर के कोषाणुओं को रक्त शर्करा की आवश्यकता होती है। रक्त शर्करा का सामान्य स्तर 70 से 100 तक होता है। यदि रक्त शर्करा का सतर 140 है तो वह बहुत अधिक है। आपको उच्च रक्त शर्करा के कोई लक्षण महसूस नहीं होंगे परंतु आपके शरीर की क्षति हो रही हो ऐसा संभव है। उच्च रक्त शर्करा लंबे समय तक बने रहने पर—आंखों, गुर्दों, रक्त शिराओं, हृदय, नसों (तंत्रिकाओं) तथा पैरों को क्षतिग्रस्त कर सकते हैं।

#### कारण

डायबटीज (मधुमेह) के साथ उच्च रक्त शर्करा हो सकता है, जिसमें आपका शरीर पर्याप्त इंसुलिन नहीं बना पाता है अथवा इंसुलिन का सदुपयोग नहीं कर रहा हो, जैसा इसे करना चाहिए। उच्च रक्त शर्करा निम्न स्थितियों में और भी बढ़ सकती है–

- तनाव
- संक्रमण अथवा रोग
- कुछ दवाएं जैसे स्टीरॉइड (steroids)
- गर्भावस्था

## मधुमेह के रोगियों में उच्च रक्त शर्करा होने के सर्वाधिक सामान्य कारण हैं-

- पर्याप्त इंसुलिन अथवा मधुमेह की गोलियाँ न लेना
- मधुमेह की दवा भूल जाना, छोड़ देना अथवा देर से लेना
- अत्यधिक भोजन करना
- अधिक शर्करा अथवा कार्बोहाइड्रेट युक्त भोजन करना

#### लक्षण

उच्च रक्त शर्करा का लोगों पर अलग-अलग प्रभाव पड़ता है। कुछ लोगों को खतरे का कोई संकेत नहीं मिलता। उच्च रक्त शर्करा, काफी समय तक, धीरे-धीरे बढ़ कर भी हो सकता है।

आपमें एक से अधिक उच्च रक्त शर्करा संबंधी लक्षण पाए जा सकते हैं। परिवार के सदस्य, आपसे पहले इन लक्षणों की पहचान कर सकता हैं।

- बह्त प्यास लगना
- बार-बार पेशाब आना
- भृख बढ़ जाना
- धुंधला दिखाई देना
- वजन घटना अथवा बढ़ना
- थकान अथवा उनींदापन महसूस करना
- त्नक मिजाज अथवा चिड्चिड़ा महसूस करना
- जख्मों का धीमी गति से ठीक होना
- पाँवों अथवा हाथों का सुन्न होना
- • अक्सर योनि में खुजली अथवा यौनिक संक्रमण होना
- नपुंसकता
- त्वचा में खुजली
- त्वचा में संक्रमण, जैसे फोड़े होना

### आपको अपनी देखभाल स्वयं करनी होगी-

यदि आपमें उच्च रक्त शर्करा के लक्षण हों तो अपने चिकित्सक से मिलें। अपने चिकित्सक से मिलें। अपने चिकित्सक से अपनी उच्च रक्त शर्करा के कारणों के संबंध में चर्चा करें। आपको अपनी रक्त शर्करा के नियंत्रण हेतु दवाएँ लेने की आवश्यकता हो सकती है अथवा संभव है कि आपको अपनी भोजन एवं व्यायाम संबंधी आदतों में परिवर्तन करना पडे।

यदि आपको मधुमेह है तो अपने मधुमेह उपचार योजना को अपनाकर रक्त शर्करा को नियंत्रि करें—

- अपनी भोजन योजना का पालन करें।
- अपनी इंसुलिन तथा गोलियाँ निर्देशानुसार लें।
- अवसर अपनी रक्त शर्करा की जाँच करें और परिणामों का रिकार्ड रखें।
- अपने गतिविधि तथा व्यायाम संबंधी नित्यक्रम (रूटीन) का अनुसरण करें।
- यदि आप उच्च रक्त शर्करा का रुझान देखें तो चिकित्सक से संपर्क करें।
- यदि आप बीमार हैं तो अपनी बीमारी के दिन संबंधी योजना का अनुसरण करें।

यदि उपचार न किया जाए तो उच्च रक्त शर्करा बेहोशी (कोमा) तथा यहाँ तक कि मृत्यु का भी कारण बन सकती है।

### हृदय रोग एवं उच्च रक्तचाप

हृदय-रोग (Cardio Vascular Diseases)

ये रोग निम्नलिखित प्रकार के होते हैं :

1. रूमेटी हृदय (Rheumutic Heart)—यह रोग जीवाणुओं के संक्रमण के फलस्वरूप होता है। न्यूमोनिया के जीवाणु (स्ट्रैंप्टोकोकाई) या गले व श्वास निलंका का संक्रमण करने वाले जीवाणु एक प्रकार के टॉक्सिन या विषैले पदार्थ श्रावित करते हैं जो रुधिर द्वारा शरीर के विभिन्न भागों में पहुंचते हैं। इन विषैले पदार्थों के कारण बुखार के साथ-साथ जोड़ों में दर्द रहने लगता है। इसे गठिया (rheumatism) कहते हैं।

यदि विषैले पदार्थ हृदय में आलिंदों व निलयों के बीच के कपाटों में तथा हृदय की मांसपेशियों में सूजन उत्पन्न करते हैं। इसके लिए पर्याप्त विश्राम की आवश्यकता होती है।

- 2. हृदय के जन्मजात रोग (Congenital Heart Diseases)—जन्म के समय हृदय में दोषों के कारण निम्नलिखित रोग होते हैं :
- 1. फुप्फुस धमनी तथा महाधमनी के बीच स्थायी संयोजन (Permanent connection between pulmonary artery and aorta)—इसके कारण हृदय द्वारा पम्प किये हुए रुधिर की कुछ मात्रा पुनः फेफड़ों में वापस आ जाती है। अतः शरीर की आवश्यकताओं को पूरा करने के लिए हृदय को अधिक परिश्रम करना पड़ता है। अधिक परिश्रम के कारण हृदय क्षतिग्रस्त हो जाता है या विवर्धित हो जाता है।
- 2. अन्तरा-अलिन्द या अन्तरा-निलय पट में छिद्र की उपस्थिति (Presence of aperture in inter-auricular or inter-ventricular septum)—इसके फलस्वरूप ऑक्सीकृत रुधिर के साथ अनॉक्सीकृत रुधिर भी शरीर में जाता है। इस दशा को सायानोसिस (cyanosis : blue baby) कहते हैं। ऐसे बच्चों के अंगुलियों के सिर व होंठ नीले रहते हैं।
- 3. हृद रोग (Coronary Diseases)—हृदय बिना किसी विश्राम के शरीर में रुधिर को पम्प करता रहता है। इस कठिन कार्य के लिए इसे सदैव ऑक्सीजन युक्त रुधिर की आवश्यकता होती है। एक जोड़ी हद धमनियां (coronary arteries) रुधिर केशिकाओं के जाल द्वारा हृदय को यह रुधिर पहुंचाती हैं। रुधिर में ऑक्सीजन की कमी होने या हद धमनी के संकीर्ण या रुद्ध होने पर रुधिर संचरण अनियमित हो जाता है जिससे वाम निलयों को पेशियों को पर्याप्त ऑक्सीजन नहीं मिल पाती। इसके कारण हृदय व छाती में दर्द रहने लगता है। इस दशा को एन्जाइना पेक्टोरिस (angina pectoris) कहते हैं। यह दर्द अति तीखा तथा छाती के बीच में होता है जिससे दम घुटने लगता है, चक्कर आते हैं तथा हृदय तेजी से धड़कने लगता है। वास्तव में एंजाइना स्वयं में कोई रोग न होकर हृदय रोगों के लिए एक चेतावनी है जिसकी तुरन्त डॉक्टरी जांच करवानी चाहिये।

सामान्य बोलचाल में इसे 'heart attack' कहते हैं। यह निम्नलिखित कारणवश होता है :

1. कोरोनरी स्क्लेरोसिस या हृदय दृढ़न (Coronary sclerosis)—यह वसा पदार्थों या रेशेदार ऊतक के एकत्रित होने से हृद धमनी या इसकी शाखाओं के संकीर्ण होने के कारण होता है। इसके फलस्वरूप हृद पेशियों के रुधिर संचरण

में रोध उत्पन्न हो जाता है जिससे दिल का दौरा पड़ता है।

- 2. कोरोनरी थ्रोम्बोसिस (Coronary thrombosis)—इससे हृद धमनी (cardiac artery) के किसी एक भाग में रुधिर का थक्का या थ्रोम्बोसिस बन जाता है जिससे हृदय की कुछ पेशियों को रुधिर नहीं मिल पाता। हृद धमनी की किसी शाखा के रुद्ध होने पर हृदय के उससे सम्बन्धित भाग को रुधिर नहीं मिल पाता जिससे वह भाग कार्य करना बन्द कर देता है।
- 4. धमनीकाठिन्य (Arterosclerosis)—धमनियों के दृढ़ीकरण को धमनीकाठिन्य कहते हैं। बुढ़ापे में धमनियां संकीर्ण एवं कम लचीली हो जाती है। लचीलेपन में कमी का कारण रुधिर वाहिनियों की दीवार में कैल्शियम व कोलेस्ट्रोल का एकत्रित होना व रेशेदार ऊतक का स्थूलन है। इसके कारण रुधिर वाहिनियों की गुहा संकीर्ण हो जाती है तथा शरीर के विभिन्न भागों को कम रुधिर पहुंच जाता है। शरीर के विभिन्न भागों को रुधिर की आवश्यक मात्रा पहुंचाने के लिए हृदय को अधिक बल से कार्य करना पड़ता है। इससे रुधिर दाब बढ़ जाता है। अत्यधिक दाब बढ़ने पर मिस्तिष्क या शरीर की धमनियां फट जाती हैं जिसे सेखिल रक्तश्राव (cerebral haemorrhage) या विसरल रक्तश्राव (visceral haemorrhage) कहते हैं।

कभी-कभी उपरोक्त पदार्थों के कारण धमनी पूरी तरह रुद्ध हो जाती है। इस प्रकार के धमनीकाठिन्य को ऐथिरोकाठिन्य (atherosclerosis) कहते हैं। इससे हृद धमनी के प्रभावित होने पर दिल का दौरा पड़ता है तथा मस्तिष्क को रुधिर पहुंचाने वाली धमनी के प्रभावित होने पर स्ट्रोक (stroke) पड़ता है।

5. अति तनाव (Hypertension)—यह भी उच्च रुधिर दाब है जिसकी ओर तुरन्त ध्यान देना आवश्यक है। यह धमनीकाठिन्य, वृक्कों के रोग, एड्रिनल प्रन्थि में ट्यूमर, मस्तिष्क के रोगप्रस्त होने या रुधिर संचरण में विश्लोभ के कारण होता है। यह मानसिक चिन्ता एवं भावुकता के कारण भी हो सकता है। अति तनाव का हृदय पर प्रतिकूल प्रभाव पड़ता है तथा इसके फलस्वरूप वृक्कों एवं नेत्रों की छोटी धमनियां क्षतिग्रस्त हो सकती हैं। अति तनाव वाले व्यक्ति हृद थ्रॉम्बोसिस व स्ट्रोक का शिकार हो जाते हैं।

### बचने के उपाय (Preventive Measures)

हृदय को स्वस्थ एवं रुधिर दाब को सामान्य रखने के लिए निम्नलिखित बातों का ध्यान रखना चाहिए :

- 1. धूम्रपान से धमनियां सिकुड़ जाती हैं, अतः धूम्रपान से बचना चाहिए।
- 2. शरीर का वजन बढने न दें।
- 3. स्टार्च, शर्करा व अधिक घी-तेल वाले खाद्य-पदार्थ नहीं खाने चाहियें।
- 4. मांस आदि कम-से-कम खाना चाहिए।
- थोड़ा-बह्त व्यायाम अवश्य करना चाहिए।

### हृदयाघात : लक्षण एवं प्राथमिक उपचार

हृदय में रक्त की आपूर्ति में कमी आने पर हृदयाघात या हार्ट अटैक होता है। यह धमनियों के संकरेपन के कारण हो सकता है या फिर धमनी में कहीं रक्त का थक्का बन जाने के कारण रुकावट पैदा हो जाने की वजह से होता है।

हृदयाघात के मामले दिनोंदिन बढ़ते जा रहे हैं जिसका प्रमुख कारण बढ़ता हुआ तनाव, भाग दौड़ वाली जिन्दगी और आधुनिक जीवनशैली है। हृदय रोग में हार्ट अटैक या हृदयघात मृत्यु का प्रमुख कारण होता है। यदि हृदयाघात के लक्षण के विषय में पूरी जानकारी हो और मरीज तुरन्त चिकित्सक से सम्पर्क करे एवं उसका प्राथमिक उपचार तत्काल किया जा सके तो बहुत से मरीजों को मृत्यु से बचाया जा सकता है।

हृदयाघात होने पर मरीज शॉक में चला जाता है। छाती में तेज और दबाव वाला दर्द होता है। यह दर्द नीचे बायीं भुजा और ऊपर वाली तरफ गरदन तक फैलता है। मरीज को सांस पूरी तरह से लेने में परेशानी होती है। नाड़ी धीरे या अनियमित गति से चलती है। मरीज कभी-कभी गिर पड़ता है और अर्द्धचेतन या बेहोश हो जाता है।

हृदय रोग का निदान होते ही चिकित्सक से सलाह लेनी चाहिए और तत्काल इलाज शुरू कर देना चाहिए इससे हृदयाघात से प्रायः बचाव हो जाता है। हृदयाघात के लक्षण दिखते ही तुरन्त चिकित्सक से सम्पर्क करना चाहिए ताकि कोई दुष्परिणाम सामने न आएं। हृदयाघात के उपचार में देरी नहीं की जानी चाहिए, जितनी देर की जाएगी उतना ही उपचार सफल होने की संभावना कम होती जाएगी।



यदि मरीज छाती में भारीपन की शिकायत करे, मरीज को तेज पसीना छूटता है, तो हृदयाघात हो सकता है। हार्ट अटैक के मरीज को सीधे अस्पताल में भर्ती करा देना चाहिए। हृदयाघात के परिणामस्वरूप हृदय की मांसपेशियां विनष्ट हो जाती हैं। यदि तत्काल उपचार शुरू कर दिया जाए तो स्थायी नुकसान नहीं होता है। खून का बहाव सामान्य हो जाता है और हृदय का पम्प फिर पहले की तरह ही काम करने लगता है। हृदयाघात के तुरन्त बाद के कुछ घंटे बहुत ही

महत्वपूर्ण होते हैं। हार्ट अटैक के मरीज का तुरन्त कुशल चिकित्सक से परामर्श लेकर, कुछ घंटों के भीतर यदि इलाज शुरू कर दिया गया, तो काफी हद तक उसे मौत से बचाया जा सकता है। हृदयाघात के लक्षण दिखते ही तुरन्त मरीज को लिटाकर उसकी श्वास-प्रक्रिया यानी 'ब्रीदिंग' चेक करनी चाहिए। पल्स या नाड़ी की गति देखनी चाहिए। जरूरत पड़ने पर कृत्रिम श्वास तत्काल देनी चाहिए। अपने मुंह को मरीज के मुंह से लगाकर सांस भरते रहें। छाती को अपनी दोनों हथेलियों से दबाते जाएं।

मरीज के कपड़े ढीले कर दें। विशेष रूप से शर्ट-कोट आदि के गले के बटन खोल दें। गले, छाती और कमर में कोई भी तंग कपड़ा न रहे। मरीज को जिस स्थिति में आराम महसूस हो, उसी स्थिति में रहने दें। यदि मरीज चेतनावस्था में है, तो उसे गहरी-गहरी सांस लेने की सलाह दें।

तुरन्त चिकित्सीय सुविधाएं उपलब्ध करायें। मरीज को पूरी तरह से आराम करने दें। तीमारदारों या मरीज को देखने आने वालों की भीड़ से बचाएं। पांच-पांच मिनट पर नाड़ी गति नोट करके लिखते जाएं।

आजकल हृदयाघात के उपचार की नयी दवाएं आ गयी हैं जो बहुत कारगर सिद्ध हो रही हैं। नस द्वारा दवा देकर रक्त के थक्के को हटाया जा सकता है। सौ में से लगभग साठ मरीज दवा द्वारा बिल्कुल ठीक हो जाते हैं।

## हृदय रोगी खान-पान में परहेज करें।

आहार संबंधी कुछ विशेष बातों का ध्यान रखकर हृदय रोग से बचा जा सकता है। अध्ययन के दौरान देखा गया है कि आहार एवं कुपोषण के कारण कई लोग हृदय रोगी होते हैं। अतः हृदय रोग से बचाव में खान-पान का विशेष महत्व है।

हृदय रोगियों को अपने आहार में अधिक मात्रा में रेशेदार चीजों का सेवन करना चाहिए। ताजे फल एवं सिब्जयों का उपयोग अधिक करना चाहिए। भोजन में नमक की मात्रा बहुत कम लेनी चाहिए, तािक रक्तचाप नियंत्रित रहे। जिन लोगों के परिवार में किसी सदस्य को हृदय रोग रहा हो, उन्हें एहितियातन बहुत कम मात्रा में नमक का सेवन करना चािहए। जिन वस्तुओं से शरीर में कोलेस्ट्रॉल की मात्रा बढ़ती है, उन खाने की चीजों से हमेशा परहेज करना हितकर होगा। हृदय रोगी को अपनी कोलेस्ट्रॉल की मात्रा हमेशा चेक करवाते रहना चािहए। आहार में शर्करा और वसा की मात्रा भी अधिक लेना नुकसानदायक होता है क्योंकि इनसे अधिक कैलोरी प्राप्त होती है और हृदय रोगी को आहार द्वारा संतुलित मात्रा में ही कैलोरी लेनी चािहए। अधिक चर्बीयुक्त आहार लेने से धमिनयों में अवरोध उत्पन्न हो जाता है। फैट या वसा मुख्य रूप से एलडीएल एवं वीएलडीएल अधिक नुकसानदायक होती है।

ब्राउन ब्रेड का सेवन हृदय रोगी के लिए नुकसानदेह नहीं है लेकिन ब्रेड के ऊपर मक्खन की मोटी परत लगाकर खाना हानिकारक है।

हरी पत्तेदार सब्जी ख़ाना फायदेमंद होता है किन्तु सब्जी को अधिक पका देने से उसके विटामिन्स विनष्ट हो जाते हैं। देशी घी, वनस्पित या जमे हुए घी, नारियल का तेल, मक्खन का हृदयरोगी को कम से कम उपयोग करना चाहिए। खाना बनाने में जैतून, मोमफली, सोयाबीन, या सूरजमुखी के तेल या सरसों के तेल का इस्तेमाल करना लाभकारी होता है।

हृदयरोगी को धूम्रपान, तम्बाकू आदि किसी भी प्रकार के नशे की लत से बहुत दूर रहना चाहिए। यदि हृदयरोगी पूर्व में धूम्रपान करता रहा तो उसे यह आदत तत्काल छोड़ देनी चाहिए। धूम्रपान हृदयरोगी के लिए जहर की तरह है, इससे हृदयरोग बढ़ने की संभावना रहती है। हृदयरोगी को वजन घटाने के लिए 'क्रेश डायटिंग' नहीं करनी चाहिए, इसके घातक परिणाम हो सकते हैं। इसकी जगह धीरे-धीरे खानपान में नियंत्रण एवं व्यायाम के द्वारा वजन कम करने का प्रयास करें।

यदि हृदयरोग का रक्त परीक्षण करने पर कोलेस्ट्रॉल की मात्रा बढ़ी हुई आए तो उसे भोजन में एनिमल फैट जैसे अण्डा, मीट, देशी घी, मक्खन, मलाई का सेवन नहीं करना चाहिए। मिठाई से हुमेशा परहेज करें।

हृदयरोगी के लिए अंकुरित अनाज, सलाद, ताजे फल खाना फायदेमंद होता है।

हृदयरोगी को संतुलित पौष्टिक आहार पर विशेष ध्यान देना चाहिए। किसी भी तरह से कुपोषण का शिकार होने पर हृदयरोग गम्भीर रूप ले सकता है और उसके घातक परिणाम सामने आ सकते हैं।

तम्बाकू, खैनी, गुल, धूम्रपान हृदयरोगी के लिए घातक हैं, इनसे परहेज करना अत्यावश्यक है। खानपान व नियमित दिनचर्या के द्वारा आप भी स्वस्थ व नीरोग रह सकते हैं। नियमित व्यायाम या तीस मिनट तक सुबह टहलना स्वास्थवर्धक होता है।

# कुछ सामान्य हृदय रोग (Some Common Heart Diseases)

- 1. एन्जाइना (Angina)—इस रोग का कारण है हृदय की भित्ति को भली प्रकार रुधिर का प्राप्त न होना। यह थक्का बनने या कोरोनरी धमनी के संकुचन से होता है। ऐसी अवस्था में हृद पेशियों को ऑक्सीजन प्राप्त नहीं होती। इससे आर्टीरियोस्क्लीरोसिस (arteriosclerosis) हो जाता है और सीने तथा कंधे में तेज दर्द होता है।
- 2. कोरोनरी थॉम्बोसिस (Coronary thrombosis)—इस अवस्था में कोरोनरी धमनी में थक्का बन जाने से हृदय पेशियों को पर्याप्त रुधिर प्राप्त नहीं हो पाता। इस कारण एन्जाइना रोग हो जाता है।
- 3. मायोकॉर्डियल इन्फ्राक्शन (Myocardial infraction)—कोरोनरी धमनी में अवरोध होने से हृदय की पेशियों को जब पर्याप्त रुधिर प्राप्त नहीं होता तब हृद पेशियां क्षतिग्रस्त हो जाती हैं। अतः ये पूरी क्षमता से कार्य नहीं कर पातीं। इस दशा को मायोकॉर्डियल इन्फ्राक्शन (myocardial infraction) या हृदय आधात (heart attack) कहते हैं।
- 4. रिह्यूमैटिक हृदय रोग (Rhematic heart disease)—बैक्टीरियल संक्रमण (Streptococcus viridans) के कारण हृदय के कपाट या वाल्व ठीक से कार्य नहीं कर पाते और इस प्रकार हृद पेशियां कमजोर हो जाती हैं और हृदय ठीक से कार्य नहीं कर पाता।

- 5. पेरिकार्डियाटिस (Pericardiatis)—इस अवस्था में बैक्टीरिया हृदयावरण (pericardium) को प्रभावित करते हैं। इसके फलस्वरूप इसमें सूजन हो जाती है और अधिक पेरिकार्डियल द्रव जमा हो जाता है। इस प्रकार हृदय का आकार बड़ा प्रतीत होता है और इस पर दबाव रहता है। इस अवस्था में हृदय को दबाव में अधिक काम करना पड़ता है जो रोगी के लिए घातक सिद्ध हो सकता है।
- 6. हृदय अवरोध (Heart block)—इस अवस्था में हिज बण्डल (His bundle) ठीक से कार्य नहीं करते क्योंकि S. A-node से उत्पन्न आवेश निलय तक नहीं पहुँच पाता जिसके कारण निलय की गति नहीं होती और परिसंचरण रुक जाता है। यह सम्पूर्ण अवस्था हृदय अवरोध कहलाती है।
- 7. निलयी तंतुकता (Ventricular fibrillation)—इस अवस्था में निलय का प्रत्येक भाग अलग-अलग संकुचन करता है और आपस में कोई समन्वय नहीं होता और न ही कोई लय होती है।
- 8. वाल्वों का अथवा कपाटीय रोग (Valvular disease)—कभी-कभी हृदय में उपस्थित वाल्व ठीक प्रकार से कार्य करने में समर्थ नहीं होते जिसके फलस्वरूप रुधिर विपरीत दिशा में जाने लगता है। इस दशा में कपाटीय रोग (valvular disease) कहते हैं।

### आइये जाने हृदय धड़कन क्या है-

हृदय अपनी प्रत्येक धड़कन पर बहुत-सा रुधिर धमिनयों में पम्प करता है। इसिलए धमिनयों में रुधिर हृदय की धड़कनों के साथ रुक-रुक कर तथा अधिक दबाव के साथ बहता है। इसको नाड़ी (pulse) कहते हैं। प्रत्येक निलय प्रकुंचन (ventricular systole) के साथ नयी नाड़ी का प्रारम्भ होता है। अतः नाड़ी दर (pulse rate) हद् स्पंदन दर के बराबर होती है।

यद्यपि रुधिर का बहाव सभी धमिनयों में झटके के साथ होता है किन्तु इसका अनुभव केवल उन्हीं धमिनयों में किया जा सकता है जो शरीर की सतह के समीप त्वचा के ठीक होती हैं जैसे कलाई की रेडियल धमिन में, कान के समीप की टेम्पोरल धमिन में, गर्दन की कैरोटिड धमिन में, मुख के किनारों के समीप की फेशियल धमिन में तथा कोहिन के मोड़ के समीप ब्रेकियल धमिन में तथा टांग के टखने के समीप की धमिन में। इस स्थानों पर इनकी धड़कन को महसूस कर सकते हैं। इसी को नब्ज देखना कहते हैं।

## हृदय की धड़कन (HEART SOUNDS)

प्रत्येक हद् स्पन्द में दो बार हृदय की धड़कन होती है :

1. प्रथम धड़कन (First Sound) या लब—यह निलय प्रकुंचन (ventricular systole) का प्रारम्भ प्रदर्शित करती है। इसमें हल्की-सी लब (lubb) की आवाज होती है। यह आवाज त्रिवलनी (trocuspid) एवं द्विवलनी (bicuspid) अलिन्द-निलय कपाटों के बंद होने के तथा निलय की कार्डियक पेशियों के सिकुड़ने के कारण होती है। इसे सिस्टोलिक

ध्वनि (systolic sound) भी कहते हैं।

2. द्वितीय धड़कन (Second Sound) या डप—यह निलय शिथिलन (ventricular diastole) की ध्विन है। इसमें dup की आवाज होती है। यह अर्धचन्द्राकार कपाटों (semilunar valves) के बंद होने के कारण होती है। यह डायस्टोल के प्रारम्भ में होती है। इसे डायस्टोलिक ध्विन (diastolic sound) भी कहते हैं। लब तथा डप की ध्विनयों को स्टेथोस्कोप द्वारा सुना जा सकता है।

हृदय में मरमर की ध्वनि (heart murmur) वाल्व की खराबी के कारण होती है। इसमें या तो कस्पिड वाल्व पूरी तरह बंद नहीं हो पाते (valvular insufficiency) अथवा सिकुड़ जाते हैं (stenosis)।

#### रुधिर दाब (BLOOD PRESSURE)

जिस दाब के साथ रुधिर धमनियों में बहता है उसे रुधिर दाब (BP) कहते हैं। धमनियों में रुधिर का दाब निम्नलिखित बातों पर निर्भर करता है :

- 1. हृदय के सिकुड़ने व शिथिलन से
- रुधिर वाहिनी में पहुंचने व निकलने वाली रुधिर की मात्रा
   पर
  - 3. रुधिर की श्यानता (viscosity) पर
  - 4. रुधिर वाहिनी की दीवार के लचीलेपन पर।

निलय प्रकुंचन (ventricular systole) के कारण सिस्टोलिक पेज में जिस दाब से रुधिर धमनियों में बहता है उसे सिस्टोलिक दाब (systolic pressure) कहते हैं। यह सबसे अधिक रुधिर दाब



स्फिग्नोमैनोमीटर।

है और इसी दबाव के प्रभाव से रुधिर धमनियों में बहता है। इस दाब को सहन करने के लिए धमनियों का मध्य स्तर अधिक मोटा तथा लचीला होता है।

हृदय की विश्रामावस्था या डायस्टोलिक प्रावस्था के समय रुधिर जिस दबाव से रुधिर धमिनयों में बहता है उसे **डायस्टोलिक दाब** (diastolic pressure) कहते हैं। रुधिर के सिस्टोलिक व डायस्टोलिक दबाव को नापने के लिए स्फिग्नोमैनोमीटर (sphignomanometer) यंत्र का उपयोग किया जाता है।

मनुष्य में आदर्श सिस्टोलिक दबाव 125-130 mg Hg होता है। आदर्श डायस्टोलिक दबाव 70-90 mm Hg होता है। इसको 120/80 द्वारा दर्शाते हैं। उच्च रुधिर दाब (high blood pressure) में सिस्टोलिक दाब 150 mg Hg तथा डायस्टोलिक दाब 100 mg Hg से अधिक होता है। इसे hypertension भी कहते हैं। उच्च रुधिर दाब के कई कारण हैं जैसे :

(a) वृद्धावस्था में धमनियों की दीवारों के सख्त होने के कारण arteriosclerosis।

- (b) वृक्क रोग के कारण
- (c) मानसिक या भावात्मक तनाव के कारण

निम्न रुधिर दाब (low blood pressure) में रुधिर का सिस्टोलिक दाब 100 या उससे नीचे तथा डायस्टोलिक दाब 50 या उससे नीचे होता है।

### इसे भी जानें-

इलेक्ट्रोकार्डियोग्राम (E.C.G.)

अगर हृदय के समीप के क्षेत्र में शरीर पर विशिष्ट स्थानों पर इलैक्ट्रोड लगा दिये जायें तो हृदय संकुचन के समय जो विद्युत विभव S.A. Node से उत्पन्न होकर हृदय के विशिष्ट संवाही पेशी तन्तुओं (special conducting muscular fibres) से गुजर कर हृदय की पेशियों को सिकुड़ने के लिए प्रेरित करता है, उसको नापा जा सकता है। जिस यंत्र को इसके लिए काम में लाते हैं उसे इलैक्ट्रोकार्डियो ग्राम कहते हैं। इस प्रकार प्रत्येक कार्डियक चक्र के अन्तर्गत सिस्टोल व डायस्टोल के समय अलिन्द व निलय में विद्युत विभव के परिवर्तन को एक ग्राफ के रूप में रिकॉर्ड किया जा सकता है। इस रिकॉर्ड को इलैक्ट्रोकार्डियोग्राफ (electrocardiograph) कहते हैं।

एक आदर्श ECG में एक P-wave, एक QRS कम्पलैक्स तथा एक T-wave होती है। यहां

P = अलिन्द का विध्रुवीकरण

QRS = निलय का विध्नुवीकरण

T = निलय का पुनः ध्रुवीकरण को प्रदर्शित करते हैं।



हृदय की धड़कन या रक्त चाप जानने के उपरान्त अब हम जानेंगे कि उक्त रक्त चाप क्या होता है? वे क्यों होता है इससे बचाव कैसे करेंगे?

#### उक्त रक्तचाप

रक्तचाप वह बल है, जो हृदय की प्रत्येक धड़कन के साथ रक्त वाहिकाओं की दीवारों पर पड़ता है। रक्तचाप से आपके पूरे शरीर में रक्त भेजने में सहायता मिलती है।

### अपने रक्तचाप को मापना

रक्तचाप की जांच प्रायः आपकी बाँह के ऊपरी हिस्से के आसपास एक चौड़ी पट्टी रख़कर की जाती है, जिसे कफ कहा जाता है। हवा कफ में डाली जाती है। जब हवा कफ से बाहर आती है, तब आपका रक्तचाप मापा जाता है। रक्तचाप किसी संख्या के ऊपर एक दूसरी संख्या है।

- ऊपरी संख्या उच्चतर होती है और इसे प्रकुंचक पाठ्यांक (systolic reading) कहा जाता है। यह हृदय द्वारा प्रम्प किए जाने पर रक्तवाहिकों में दबाव है।
- निचली संख्या निम्नतर हैं और इसे अनुशिथिलन पाठ्यांक (diastolic reading) कहा जाता है। यह धड़कनों के बीच हृदय के आराम करने के समय रक्त वाहिकाओं में दबाव है।

#### सामान्य रक्तचाप

सामान्य रक्तचाप 80 या इससे कम पर 120 होता है। प्रत्येक व्यक्ति का रक्तचाप भिन्न होता है। प्रत्येक व्यक्ति का रक्तचाप प्रति घंटे और प्रतिदिन बदलता रहता है।

#### उच्च रक्तचाप

उच्च रक्तचाप को अतिरिक्त दाब (हाइपरटेंशन) भी कहा जाता है। उच्च रक्तचाप 90 पर 140 या इससे अधिक है। उच्च रक्तचाप का निदान (diagnosis) तब तक नहीं किया जाता है जब तक आपके रक्तचाप की कई बार जांच न की जाए और यह उच्च न बना रहे।

आपके रक्त के लिए आपकी रक्त वाहिकाओं में प्रवाहित होना जितना कठिन होगा, आपके रक्तचाप की संख्या उतनी ही उच्च होगी। आपका हृदय उच्च रक्तचाप के कारण सामान्य से अधिक काम कर रहा है। उच्च रक्तचाप के कारण दिल का दौरा, रक्ताघात, गुर्दे का काम न करना और रक्त वाहिकाओं के कठोर होने जैसे रोग हो सकते हैं।

#### उच्च रक्तचाप के लक्षण

क्या आपको उच्च रक्तचाप है—इस बात को जानने का केवल एक ही तरीका है कि इसकी जाँच करवाई जाए। अधिकांश लोगों में कोई लक्षण नहीं होता। कुछ लोगों को सिरदर्द हो सकता है या दृष्टि धुंधली हो सकती है।

#### उच्च रक्त चाप से बचाव कैसे करें-

 अपने रक्तचाप की अवसर जांच करवाएं। यदि आपका रक्तचाप उच्च बना रहता है, तो अपने चिकित्सक को फोन करें।

157

- अपने चिकित्सक से पूर्व निर्धारित कार्यक्रम के अनुसार मिलें।
- अपने चिकित्सक के निर्देश के अनुसार रक्तचाप की दवा लें।
- दवा का सेवन तब भी जारी रखें जबिक आप स्वस्थ महसूस कर रहे हों या आपका रक्तचाप सामान्य हो।
- यदि आपका वजन अधिक हो तो इसे कम करें।
- अपने भोजन और पेय पदार्थों में नमक की मात्रा कम करें।
- अलकोहल के सेवन से बचें।
- धूम्रपान छोड़ दें या तम्बाकू का उपयोग न करें।
- व्यायाम लगभग प्रतिदिन करें।
- तनाव कम करें।
- प्रतिदिन आराम करें।

### इस पर ध्यान दें-

## यदि आपको निम्नलिखित लक्षण हों तो, तुरन्त डॉक्टर को दिखायें-

- तेज सिरदर्द
- नजर में परिवर्तन
- सीने में दर्द, दबाव या कड़ापन
- सांस लेने में परेशानी होना या सांस फूलना
- चेहरे, बाँह या टांग में अचानक सुन्नपन, झुनझुनी या कमजोरी
- अचानक घबराहट, समझने में कठिनाई या बोलने में कठिनाई
- निगलने में कठिनाई

## ध्यान देने योग्य बातें

## हृदय रोग से बचने को नमक कम खाएं

दुनिया भर में हर साल हृदय संबंधी रोगों से 1.75 करोड़ लोगों की मौत होती है। खानपान में थोड़ी सी सावधानी बरत कर इस आंकड़े को काफी कम किया जा सकता है। यदि हम अपने आहार में नमक की मात्रा में तीन ग्राम की कमी करें तो इससे उच्च रक्तचाप और हृदय रोगों का खतरा काफी हृद तक कम किया जा सकता है।

## नियमित व्यायाम और संतुलित आहार के जरिये नियंत्रित करें उच्च रक्तचाप

लाइफस्टाइल के कारण उच्च रक्तचाप के मरीजों की संख्या लगातार बढ़ रही है, इसे नियंत्रण करने के तरीकों के बारे में जानने के लिए इस लेख को पढ़ें।

158

## वस्तुनिष्ठ प्रश्न मधुमेह रोग में निम्नलिखित का स्त्राव कम होता है-(2) इन्सुलिन (1) जठररस (4) शर्करा (3) थाइराक्सिन मधुमेह रोग में रक्त में निम्नलिखित में से किसकी मात्रा बढ़ जाती है। (1) शर्कर<del>ा</del> (2) नमक (3) इन्सि्लिन (4) पिट्यूटरी मधुमेह रोग मुख्यतः कितने प्रकार का होता है? 3. (1) एक (2) दो (3) तीन (4) चार निम्नलिखित में से कौन हृदय रोग नहीं है-(1) कोरोनरी थ्रॉम्बोसिस (2) पेरिकार्डियाटिस (3) हृदय अवरोध (4) थायरॉडिज्म आदर्श डायस्टोलिक दबाव होता है-5. (1) 70-90 mmHg (2) 80-90 mmHg (3) 75-90 mmHg (4) 85-90 mmHg रुधिर दाब पर प्रभाव किसके कारण नहीं होता है-(1) हृदय में सिकुड़न शिथिलन से (2) रुधिर वाहिनी में पहुंचने व निकलने वाली रुधिर की मात्रा पर (3) रुधिर की श्यानता पर (4) खाना खाने से अति लघु उत्तरीय प्रश्न (1) रिहयूमैंटिक हृदय रोग किसके कारण होता है?

- रक्त में किस पदार्थ की मात्रा अधिक होने से मध्मेह होता है।
- बार-बार पेशाब किस रोग में आता है। (3)
- (4) प्यास लगना, घाव होने पर जल्दी ठीक नहीं होना एवं नपुंसकता का होना किस रोग के लक्षण हैं? लघु उत्तरीय प्रश्न

- बच्चों में मध्मेह रोग होने के कौन-कौन से लक्षण है? (1)
- हमारे भोजन में कार्बोहाइड्रेट का क्या महत्व है। (2)
- मधुमेह के इंसुलिन की कमी के कारण क्या प्रभाव पड़ता है? (3)
- मधुमेह रोगी के आहार में किसकी मात्रा प्रचुर होनी चाहिये?

### दीर्घ उत्तरीय प्रश्न

- व्हा है? उच्च रक्त शर्करा एवं मध्मेह में क्या अन्तर है मध्मेह रोग से हम किस तरह बच सकते हैं? (1)

# इकाई - 8

पर्यावरण और प्राकृतिक संसाधन (जलीय पौथों एवं जानवरों का प्राकृतिक वास, मरुद्भिद पौथों एवं जानवरों का प्राकृतिक वास। पर्यावरण असंतुलन में मानव का हस्तक्षेप, वन्य जीव जन्तुओं का संरक्षण कार्यक्रम, ग्रीन हाउस गैसीय प्रभाव, ओजोन-क्षरण, धरती का बढ़ता तापमान)

इस इकाई को पढ़ने के पश्चात् निम्नांकित प्रकरणों को शिक्षार्थी समझ सकेंगे-

- पर्यावरण और प्राकृतिक संसाधन
- जलीय पौधों एवं जानवरों का प्राकृतिक वास
- मरूद्भिद पौधों एवं जानवरों का प्राकृतिक वास
- पर्यावरण असंतुलन में मानव का हस्तक्षेप
- वन्य जीव जन्तुओं का संरक्षण कार्यक्रम
- ग्रीन हाउस गैसीय प्रभाव
- ओजोन-क्षरण
- धरती का बढ़ता तापमान

पर्यावरण : हमारी पृथ्वी पर सभी जगहों का पर्यावरण एक जैसा नहीं है। विभिन्न भौगोलिक क्षेत्रों में भिन्न-भिन्न पर्यावरण है। भूमध्यसागरीय पर्यावरण ध्रुवीय पर्यावरण से बिल्कुल भिन्न होता है। इसी प्रकार, जंगली क्षेत्रों का पर्यावरण मरुस्थलीय पर्यावरण से भिन्न होता है। अब प्रश्न उठता है कि क्यों एक जगह का पर्यावरण दूसरे जगह के पर्यावरण से भिन्न होता है, जो उस क्षेत्र के पर्यावरण के विभिन्न घटकों में एक आपसी संतुलन होता है, जो उस क्षेत्र के पर्यावरण के संतुलित होने के लिए आवश्यक है। पर्यावरण के जैव और अजैव घटक सभी जगह एक समान नहीं होते हैं। स्थान के साथ-साथ इन घटकों में परिमाणात्मक (quantitative) और गुणात्मक (qualitative) परिवर्तन होते हैं। यही कारण है कि स्थान के साथ-साथ इन कारकों के बीच परस्पर होनेवाली क्रिया भी प्रभावित होती है और इसी कारण विभिन्न जगहों का पर्यावरण भिन्न-भिन्न होता है। पर्यावरण को जैव और भौतिक घटकों की अंतर्क्रिया के अलावा जो कार्य सबसे ज्यादा प्रभावित करती है वह है 'मानव-क्रियाकलाप'। मानव के क्रियाकलाप जितने अनियंत्रित होंगे, पर्यावरण उतना ही असंतुलित होगा। आज के युग में भौतिक विकास के लिए मानव ने प्रकृति का मनमाने ढंग से दोहन किया है; उद्योगीकरण और खेती के लिए

जंगलों का अनियंत्रित विनाश हुआ है; बड़े-बड़े कारखाने लगाए गए हैं जिनकी चिमनियों के धुएँ ने पर्यावरण को प्रदूषित किया है। मानवों द्वारा कुछ हानिकारक रसायनों (जैसे—क्लोरोफ्लोरो कार्बन CFC) के प्रयोग से हमारे पर्यावरण के ओजोन स्तर का क्षय हुआ है और सूर्य की पराबैंगनी किरणों को अवशोषित करने वाली यह परत धीरे-धीरे नष्ट हो रही है। महानगरों में वाहनों से निकले धुएँ तथा कारखानों से निकले वर्ज्य पदार्थों आदि ने यहाँ के पर्यावरण के स्तर को निम्न बना दिया है, और ऐसे पर्यावरण में रहनेवाले लोग कई प्रकार की बीमारियों से पीड़ित हैं। मानव के ऐसे कार्यकलापों से हमारे अमूल्य पर्यावरण के विभिन्न घटकों (जैसे—वायु, जल, मृदा और विभिन्न जीवन-संगठन)—जो हमारे जीवन के लिए आवश्यक हैं-का प्रदूषण होता है, जिससे पर्यावरणीय असंतुलन (ecological imbalance) की स्थिति पैदा होती है, जो जीव जगत के अस्तित्व के लिए (जिसमें मनुष्य भी शामिल है) हानिकारक है। वैसे तो मानव अपनी सभ्यता के प्रथम चरण से ही अपने क्रियाकलापों से (जैसे— कोयले को जलाने, जंगलों को काटने और जंगली जानवरों का शिकार करने आदि) पर्यावरण को क्षति पहुँचाता रहा है, लेकिन पहले ये क्रियाकलाप छोटे स्तर पर किए जाते थे और इनसे होने वाली क्षति की पूर्ति पर्यावरण द्वारा स्वयं कर ली जाती थी; क्योंकि हमारा पर्यावरण एक स्वनियंत्रित (self regulating) तंत्र है। लेकिन, आधुनिक मानवों के क्रियाकलाप भिन्न हैं और बड़े स्तर पर किए जा रहे हैं जिससे हमारे पर्यावरण के विभिन्न घटकों के बीच अनियंत्रित असंतुलन पैदा होता है और पर्यावरण के स्तर में ह्रास होता है।

# पृथ्वी का वायुमंडल-भौतिक या अजैव पर्यावरण (The Earth's Atmosphere-Physical or Abiotic Environment)

करीब 5 अरब (billion) वर्ष पूर्व पृथ्वी की उत्पत्ति हुई जो तब केवल एक जलते हुए गैस का पिंड मात्र थी। आज की पृथ्वी की तुलना में अपने उत्पत्ति के समय पृथ्वी काफी बड़ी थी जो धीरे-धीरे काफी ठंडी भी हो गयी थी। उस समय पृथ्वी के चारों ओर कोई वायुमंडल नहीं था, जैसा आज पाया जाता है। इसके बाद पृथ्वी ने शनैः-शनैः सिकुड़ना प्रारंभ किया जिससे इसका आकार छोटा होता चला गया और यह पहले की अपेक्षा गर्म होती चली गई। पृथ्वी के सिकुड़ने के क्रम में इससे अनेक गैसें निकलकर इसके चारों ओर फैल गईं जिससे पृथ्वी के वायुमंडल का निर्माण हुआ। निकलने वाली इन गैसों में नाइट्रोजन, हाइड्रोजन, मेथेन, अमोनिया, हीलियम, जलवाष्य आदि कुछ प्रमुख गैस थे। तब हमारे वायुमंडल में मुक्त ऑक्सीजन  $(O_2)$  नहीं था, क्योंकि पौधों द्वारा प्रकाश संश्लेषण की क्रिया शुरू होने के पश्चात् ही वायुमंडल में मुक्त ऑक्सीजन का प्रादुर्भाव हुआ। जिस समय ये गैसें पृथ्वी की सतह से विमोचित हुईं उस समय गर्म होने के कारण इन गैसों के अणुओं का वेग (गतिज ऊर्जा) काफी अधिक था। बहुत अधिक वेग होने के कारण कुछ गैसें जो काफी हल्की थीं अंतरिक्ष में पलायन कर गईं; क्योंकि उनका प्रवायन वेग पृथ्वी के गुरुत्व बल से काफी अधिक था या यों कहें विद्

कि उनके अणुओं की गतिज ऊर्जा इतनी अधिक थी जो पृथ्वी के गुरुत्व बल के नियंत्रण से मुक्त हो जाती थी। ऐसे गैसों में हाइड्रोजन और हीलियम प्रमुख थे। गर्म अमोनिया गैस और जलवाष्य के आपसी क्रिया से नाइट्रोजन की अतिरिक्त उत्पत्ति हुई। वायुमंडल में 78 प्रतिशत नाइट्रोजन, 21 प्रतिशत ऑक्सीजन, कार्बन डाइऑक्साइड 0.03 प्रतिशत तथा अन्य गैसें जैसे नीऑन, जेनॅन, क्रिप्टन आदि की सिम्मिलित मात्रा करीब 0.07 प्रतिशत है। कार्बन डाइऑक्साइड वर्तमान समय में प्रदूषण के कारण वायुमंडल में 0.03% से 0.04% हो गई है। वायुमंडल में जलवाष्य भी पाया जाता है, परंतु इसकी प्रतिशत मात्रा में उतार-चढ़ाव होता रहता है।

पृथ्वी के चारों ओर करीब 60 km की ऊँचाई तक वायुमंडल का विस्तार है। वायुमंडल की ऊपरी सतह में 15 km से 60 km ऊँचाईवाले क्षेत्र के बीच ओजोन  $(O_3)$  का एक विशेष स्तर पाया जाता है जो पृथ्वी पर रहनेवाले जीवधारियों के लिए अत्यंत महत्त्वपूर्ण है, क्योंकि सूर्य के प्रकाश में उपस्थित हानिकारक पराबैंगनी किरणों का अवशोषण इस स्तर द्वारा कर लिया जाता है। ये पराबैंगनी किरणों मनुष्य में त्वचा के कैंसर और अनेक प्रकार के उत्परिवर्तन (mutation) को जन्म देती हैं। मनुष्य ने अपने क्रियाकलापों से वायुमंडल में कुछ ऐसे रसायनों (CFC) का निक्षेप किया है जो धीरे-धीरे इस ओजोन परत को नष्ट कर रहा है और इस प्रकार पृथ्वी पर रहने वाले जीव अब पहले से ज्यादा पराबैंगनी किरणों के संपर्क में हैं।

ओजोन स्तर के ऊपर एक आयनमंडल (ionosphere) है जिसमें आयनिक गैस पाई जाती है। यह आयन मंडल दूरसंचार में काफी सहायता करता है; क्योंकि पृथ्वी की सतह से प्रेषित रेडियो तरंगों को यह वापस पृथ्वी पर परावर्तित कर देता है, जिससे सारा विश्व रेडियो, टेलीविजन, दूरसंचार आदि के माध्यम से जुड़ जाता है। इसीलिए, हम दुनिया के किसी कोने से प्रसारित कार्यक्रम अपने घरों में रेडियो पर सुन सकते हैं या टेलीविजन पर देख सकते हैं। इसी आयन मंडल स्तर के कारण हम घर बैठे किसी व्यक्ति से या दुनिया के किसी भाग से संपर्क कर सकते हैं।

पृथ्वी अपने सिकुड़ने के क्रम में विभिन्न सांकेद्रिक गोलों के रूप में विभेदित हो गई। सबसे बाहरी गोलीय क्षेत्र को भूपर्पटी (crust), बीच वाले गोलीय क्षेत्र को प्रावार (mantle) तथा सबसे अंदर वाले ठोस गोले को क्रोड (core) कहते हैं।

अजैव या भौतिक पर्यावरण के निम्नलिखित घटक होते हैं---

- (क) रासायनिक घटक—इसमें वातावरण में उपस्थित अकार्बनिक पदार्थ आते हैं; जैसे—ऑक्सीजन  $(O_2)$ , कार्बन डाइऑक्साइड  $(CO_2)$ ,  $N_2$ ,  $H_2O$ ,  $CaCO_3$ , फॉस्फोरस (P), सल्फर (S) आदि।
- (ख) भौतिक या मौसमी घटक—इसमें ताप, प्रकाश, आर्द्रता, दाब आदि को सम्मिलित किया जाता है।

जैव पर्यावरण (Biotic environment)—पर्यावरण में उपस्थित सभी जीव सम्मिलित रूप से जैव पर्यावरण का निर्माण करते हैं। आज हम अपने चारों ओर अनेक प्रकार के जीवों को देखते हैं। वास्तव में ये सारे जीव जो विभिन्न रूपों में हमारे पर्यावरण में विद्यमान हैं, करोड़ों वर्षों से निरंतर चल रहे 'जैव विकास' के ही परिणाम हैं। जब पृथ्वी पर जीवन के लिए अनुकूल परिस्थितियाँ उत्पन्न हुईं तो एक कोशिक (unicelluclar) जीवों का प्रादुर्भाव हुआ जिससे कालांतर में 'जैव विकास' के फलस्वरूप अनेक प्रकार के जटिल संरचनावाले बहुकोशिक (multicellular) पौधों एवं प्राणियों का विकास हुआ। पौधे, जंतु और सूक्ष्म जीव (अपघटक) सम्मिलित रूप से जैव पर्यावरण का निर्माण कर लेते हैं। जैव और अजैव पर्यावरण दोनों जनसंख्या के आकार को नियंत्रित करते हैं और उनमें अनेक परिवर्तन लाते हैं। जनसंख्या के आकार को प्रभावित करनेवाले कारकों में (i) स्थान की उपलब्धता, (ii) जलवायु, (iii) पोषणों की उपलब्धता और (iv) अन्य जीवों के साथ पारस्परिक क्रिया प्रमुख है।

जैव और अजैव पर्यावरण के अलावा पर्यावरण का एक और भाग है जो स्वयं मानव के क्रियाकलापों द्वारा निर्मित होता है और मानव के व्यवहार को प्रभावित करता है। इसे मानव का सांस्कृतिक या सामाजिक पर्यावरण कहते हैं और इसके तहत मानव जीवन के सांस्कृतिक (cultural), सामाजिक (social), ऐतिहासिक (historical), नैतिक (moral), राजनैतिक और सौंदर्यबोध-संबंधी (aesthetic) पक्ष आते हैं। मानव सभ्यता के इतिहास के अध्ययन से मानव का उसके पर्यावरण के साथ पारस्परिक क्रिया का तथा मानव की सभ्यता के प्रथम चरण का हमें ज्ञान प्राप्त होता है। इसके अध्ययन से हमें यह भी पता चलता है कि विकास के क्रम में किस प्रकार मानव की आवश्यकताएँ बदलती गईं और उसकी क्षमताओं में वृद्धि होती चली गई, जिसके कारण समय के साथ-साथ पर्यावरण में उसकी भूमिका भी बदलती चली गई।

मनुष्य का उसके पर्यावरण के बीच अंतर्सम्बन्ध (Interrelationship between man and his environment)—ऊपर के विवेचनों से यह तो स्पष्ट हो गया है कि मानव अपने पर्यावरण से अनन्य रूप से संबद्ध है तथा ये आपस में एक-दूसरे को प्रभावित भी करते हैं। वातावरण में होनेवाला कोई भी परिवर्तन मानव पर अपना प्रभाव डालता है और मानव भी अपने क्रियाकलापों से पर्यावरण को प्रभावित करते हैं।

## प्राकृतिक संसाधन (Natural Resources)

सभ्यता के विकास के प्रारम्भ से ही मनुष्य अपने जीवन को सुगम बनाने के लिए प्राकृतिक संसाधनों का उपयोग करता रहा है। सवाल यह उठता है कि प्राकृतिक संसाधन क्या है? कहावत भी है कि हमारा शरीर क्षिति, जल, पावक, गगन, समीरा से मिल कर बना है। यह कहावत बहुत पुरानी है। परन्तु देखें तो बहुत कुछ हमारे उपयोग की सामग्री से मेल खाती है। आज हम सभी जल, वायु,

सूर्यप्रकाश, वन, मृदा तथा खनिज पदार्थों के उपयोग के बिना जीवित नहीं रह सकते हैं। यही प्राकृतिक संसाधन हैं। इन संसाधनों के बारे में जानेंगे तथा यह भी जानेंगे कि हम किस प्रकार उनका उपयोग कर रहे हैं? हो सकता है कि हम यह भी सोचें कि हमें अपने संसाधनों का उपयोग इस प्रकार का करना चाहिए जिससे संसाधनों का संपोषण हो सके और हम अपने पर्यावरण का संरक्षण भी कर सकें। हम जल, वायु, सूर्यप्रकाश, वन, मृदा तथा खनिज पदार्थों (कोयला, पेट्रोलियम तथा अयस्क) जैसे प्राकृतिक संसाधनों की चर्चा करेंगे तथा उन समस्याओं पर भी विचार करेंगे कि सम्पोषित विकास हेतु इन संसाधनों का प्रबन्धन किस प्रकार किया जाय? आप सभी ने देखा भी होगा कि हम सभी संसाधनों के अविवेकपूर्ण दोहन से ही विकट संकट उत्पन्न करते जा रहे हैं। यहाँ पर 3-R की चर्चा से संसाधनों का यथा उचित उपयोग कर सकते हैं 3 R निम्नलिखित हैं—

- 1. कम उपयोग (Reduce)—इसका अर्थ है कि आपको कम से कम वस्तुओं का उपयोग करना चाहिए। आप प्रयोग के उपरांत बिजली के पंखे एवं बल्ब का स्विच बंद करके बिजली बचा सकते हैं। आप टपकने वाले नल की मरम्मत करके जल की बचत कर सकते हैं। आपको आहार व्यर्थ नहीं करना चाहिए। क्या आप कुछ अन्य वस्तुओं के विषय में सोच सकते हैं, जिनका उपयोग कम किया जा सकता है।
- 2. पुनः चक्रण (Recycle)—इसका अर्थ है कि आपको प्लास्टिक, कागज, काँच, धातु की वस्तुएँ तथा ऐसे ही पदार्थों का पुनःचक्रण करके उपयोगी वस्तुएँ बनानी चाहिए। जब तक अति आवश्यक न हो इनका नया उत्पादन/संश्लेषण विवेकपूर्ण नहीं है। इनके पुनः चक्रण के लिए पहले हमें अपद्रव्यों को अलग करना होगा जिससे कि पुनः चक्रण योग्य वस्तुएँ दूसरे कचरे के साथ भराव क्षेत्र में न फेंक दी जाएँ। क्या आपके गाँव, कस्बे अथवा नगर में ऐसा कोई प्रबंध है जिससे इन पदार्थों का पुनः चक्रण किया जा सके?
- 3. पुनः उपयोग (Reuse)—यह पुनः चक्रण से भी अच्छा तरीका है क्योंकि पुनः चक्रण में कुछ ऊर्जा व्यय होती है। पुनः उपयोग के तरीके में आप किसी वस्तु का बार-बार उपयोग करते हैं। लिफाफों के फेंकने की अपेक्षा आप फिर से उपयोग में ला सकते हैं। विभिन्न खाद्य पदार्थों के साथ आई प्लास्टिक की बोतलें, डिब्बे इत्यादि का उपयोग रसोईघर में वस्तुओं को रखने के लिए किया जा सकता है। अन्य कौन-सी वस्तुएँ हैं जिन्हें हम पुनः उपयोग में ला सकते हैं?

उपर्युक्त वर्णित प्राकृतिक संसाधनों को जानने का प्रयास करते हैं-

जल (Water)—प्रशिक्षकों से पूछे कि प्यास लगने पर कैसा महसूस होता है? गला सूखने लगता है तथा बेचैनी होती है। जल पीने के बाद शरीर के अंगों में स्फूर्ति आ जाती है और बेचैनी दूर हो जाती है। हम सभी दैनिक जीवन में पानी का प्रयोग पीने में, खाने पकाने में, सफाई करने, कपड़ा धोने, स्नान करने, सिंचाई करने, आग बुझाने,

सभी सजीवों के जीवन के लिए जल अत्यन्त आवश्यक है। कहा भी गया है (1) जल ही जीवन है। (2) जल है तो कल है (3) यदि जल उपलब्ध है तो आपका भविष्य सुरक्षित है।

### क्या आप जानते हैं

- 22 मार्च का दिन विश्व जल दिवस के रूप में मनाया जाता है।
- 15 Oct Global Hand Washing day (वैश्विक हस्तन प्रक्षालन दिवस) है।

क्या सजीवों का जीवन जल पर निर्भर है? इसे समझने के लिए प्रशिक्षुओं से दो क्रिया कलाप करने को कहे।

प्रथम क्रिया-कलाप—दो गमलों में नमी युक्त उपजाऊ मिट्टी को भरने के लिए कहा जाय। ऋतु के अनुसार दोनों गमलों में बीज का रोपण कर अंकुरित करा लिया जाय। तत्पश्चात् अंकुरित पौधे के प्रथम गमले में पानी का छिड़काव प्रत्येक शाम/प्रातः करें तथा दूसरे गमले में पानी का छिड़काव कदापि न करें दोनों गमलों में सूर्य का बराबर प्रकाश पड़ता रहे। यह ध्यान में रखा जाय कि क्या निष्कर्ष प्राप्त होता है?

कुछ सप्ताह बाद प्रथम गमले के पौथे में विकास जारी रहता है जबकि द्वितीय गमले में लगा पौधा सूख जाता है और अन्ततः नष्ट हो जाता है।

द्वितीय क्रियाकलाप—िकसी जलीय पौधे, जैसे—हाइड्रिला या वेलिसनेरिया या किसी जलीय जन्तु जैसे मछली को पानी से बाहर निकाल कर रखें। मछली तो तत्काल छटपटाने लगती है और मरणासन्न की ओर अग्रसर हो जाती है। जलीय पौधा कुछ समय बाद मुरझाने लगता है ऐसा क्यों हो रहा है?

उपर्युक्त दोनों क्रिया कलापों से स्पष्ट है कि सजीवों का जीवन जल पर निर्भर है।

प्रशिक्षुओं से पूछें कि जल प्राप्ति के स्रोत क्या है? क्या आप बता सकते हैं कि जल का सबसे बड़ा स्रोत क्या है? पृथ्वी पर पानी की सबसे अधिक मात्रा समुद्र में है अतः समुद्र प्राकृतिक जल का सबसे बड़ा स्रोत है। शीत प्रधान क्षेत्रों में जल बर्फ के रूप में प्रचुर मात्रा में पाया जाता है। नदी, तालाब, झील, झरना, समुद्र, वर्षा, पर्वतों पर जमी बर्फ तथा भूमिगत जल आदि जल के मुख्य प्राकृतिक स्रोत हैं। भूमिगत जल कुआँ, नलकूप, हैण्ड पम्प के द्वारा प्राप्त किया जाता है।

शुद्ध जल के सामान्य भौतिक लक्षण क्या हैं? शुद्ध जल रंगहीन, गंधहीन, स्वादहीन एवं पारदर्शक द्रव है। जल में विभिन्न प्रकार के लवण घुले रहते हैं, जिसके कारण जल का विशेष स्वाद होता है विभिन्न लवणों के घुले होने के कारण ही कुछ जल हानिकारक एवं कुछ लाभप्रद होता है। पीने का जल सम्पूर्ण जल का लगभग 2% भाग है। इससे आप अन्दाजा लगा सकते हैं कि 98% जल हमारे लिए पीने योग्य नहीं है। अतः पीने के जल का उपयोग हम सभी को सोच समझ कर ही करना बुद्धिमानी है। कभी नदियों, तालाबों, पोखरों आदि का जल पीने के लिए प्रयोग किया जाता था परन्तु

आज क्या स्थिति हो गयी हैं? देश की प्रमुख निदयाँ गंगा और यमुना के जल का अवलोकन करें तो पायेंगे कि यह इतना प्रदूषित हो गया है कि इन निदयों के जलीय जीव प्रायः समाप्त हो चुके हैं। हम सभी का दायित्व है कि जीवन रेखा को बढ़ाया जाय न कि समाप्त। अतः हम सभी प्रण करें कि जल को प्रदूषित नहीं करेंगे और उसका यथोचित प्रयोग कर जल को बचाने का कार्य करेंगे।

वायु (Air)—हम आकाश में पतंग, पक्षी, वायुयान को उड़ते हुए देखते हैं। कभी-कभी पेड़ पौधों की पत्तियाँ हिलती हुई दिखायी देती हैं। ऐसा क्यों होता है?

पृथ्वी चारों ओर से वायु के आवरण से घिरी हुई है, जिसे वायुमण्डल कहा जाता है। वायु की अनुपस्थित में पृथ्वी पर जीवन सम्भव नहीं है। हम जानते हैं कि वायु विभिन्न गैसों का मिश्रण है। वायु का लगभग 1/5 भाग ऑक्सीजन तथा 4/5 भाग नाइट्रोजन है। वायु में 78% नाइट्रोजन, 21% ऑक्सीजन 0.03% कार्बन डाई ऑक्साइड तथा 0.77% अन्य गैसें (अक्रिय गैसें) उपस्थित हैं। अक्रिय गैसें जैसे हीलियम, नियॉन, आर्गन, क्रिप्टन बहुत अल्प मात्रा में पायी जाती है। वायु के इन घटकों की मात्रा में कोई विशेष परिवर्तन नहीं होता है। इसके अतिरिक्त वायु गैस, द्रव तथा सूक्ष्म ठोस के कणों का मिश्रण है।

## ऑक्सीजन के प्रमुख भौतिक गुण-

- (1) ऑक्सीजन रंगहीन, गंधहीन एवं स्वादहीन गैस है।
- (2) यह गैस हवा से भारी है।
- (3) यह जल में अल्प विलेय है। जलीय जन्तु एवं पौधे जीवित रहने के लिए पानी में घुली ऑक्सीजन का उपयोग करते हैं।
  - (4) यह लिटमस के प्रति उदासीन है।

## वायु की उपयोगिता :

- वायु में ऑक्सीजन की उपस्थिति सभी सजीवों के लिए श्वसन क्रिया में सहायक होती है।
- वायु जलने में सहायता करती है।
- साइकिल, स्कूटर, कार, ट्रक आदि के टायरों में हवा भरी जाती है।
- कृषि उत्पादन, जैसे—अनाज, दालें, मेवे आदि तथा गीले कपड़े सुखाने में भी वायु सहायता करती है।
- किसान वायु की सहायता से गल्ले तथा भूसे को अलग करता है।
- वायु पाल नौका, ग्लाइडर, पैराशूट आदि के चलने/उड़ने में सहायक होती है।
- वायु मदार, सेमल, कपास व ढाक आदि के बीजों के प्रकीर्णन तथा फूलों की परागण क्रिया में

सहायक होती है।

- वायु गैसों व वाष्प के फैलाव में सहायक है।
- वायु पवन-चक्की चलाने में सहायता करती है। पवन चक्की कुएँ से पानी निकालने, आटा-चक्की को चलाने तथा समुद्री तटवर्ती क्षेत्रों में विद्युत उत्पन्न करने में प्रयोग की जाती है।
- वायुमंडल में उपस्थित ओजोन की परत सूर्य की हानिकारक पराबैंगनी किरणों को पृथ्वी पर पहुँचने से रोकती है।

## पर्यावरण और प्रदूषण

हम समाचार पत्रों में पढ़ते एवं सुनते हैं कि हमारा पर्यावरण दिन प्रतिदिन प्रदूषित होता जा रहा है इस प्रदूषण के क्या कारण हैं?

फैक्ट्री से निकलने वाला थुआँ, वाहन के चलने तथा ईंधन के जलने से निकलने वाले थुएँ के कारण वायु प्रदूषित होती जा रही है। वायु प्रदूषण का लगभग 10%-15% भाग का मुख्य कारण धुआँ ही है।

बड़े शहरों में जहाँ अधिक कारखाने पाए जाते हैं तथा अधिक वाहन चलते हैं, वायु अधिक प्रदूषित हो जाती है। जिसके कारण वहाँ का पूरा पर्यावरण प्रभावित होता है। ऐसे पर्यावरण में अधिक लोग रोगग्रस्त हो जाते हैं।

गाँवों तथा छोटे नगरों में जहाँ कारखाने नहीं हैं या कम हैं तथा वाहन की संख्या भी कम है वायु अपेक्षाकृत कम प्रदूषित होती है। वायु में प्रदूषण कम करने के लिए सघन वृक्षारोपण किया जाना आवश्यक है तथा पेड़ों की अनावश्यक कटाई नहीं की जानी चाहिए।

फास्फोरस एक अत्यन्त ज्वलनशील तत्व होता है। इसे पानी भरकर डिब्बे में बन्द रखा जाता है। हवा से मिलकर यह जलने लगता है। प्रायः जादूगर लोगों को बेवकूफ बना कर ठगने के लिए इस तत्व के टुकड़े को बड़ी सफाई के साथ पानी से निकालकर हाथ हवा में उछाल कर फेंक देते हैं, और हवा के सम्पर्क में आते ही फास्फोरस का टुकड़ा जलने लगता है। जादूगर इस उपलब्धि पर तालियाँ पिटवाता है, और पैसे बटोर कर चलता बनता है। है न यह विज्ञान का आश्चर्यजनक कमाल।

सूर्य प्रकाश (Sunlight)—सूर्य का प्रकाश एक प्रकार की ऊर्जा है जिसे सौर ऊर्जा (solar energy) या विद्युत् चुम्बकीय ऊर्जा (electromagnetic energy) कहते हैं। यह ऊर्जा तरंगों के रूप में गित करती है। दो समीपवर्ती तरंगों के शिखर (crest) के बीच की दूरी को तरंगदैध्यं (wavelength =  $\lambda$ ) कहते हैं। तरंग-दैध्यं जितनी छोटी होती है, उतनी ही ऊर्जा अधिक होती है। सूर्य के प्रकाश में विभिन्न तरंग-दैध्यं की तरंगें होती हैं। चित्र में विद्युत्-चुम्बकीय स्पेक्ट्रम को पूरी तरह फैलाया

गया है (तरंग-दैर्ध्य को नैनोमीटर, nm में नापा जाता है)। प्रकाश स्पेक्ट्रम का छोटा भाग ही दृश्य प्रकाश (visible light) बनाता है। दृश्य प्रकाश के प्रत्येक रंग के लिए विशेष तरंग-दैर्ध्य होती है, जैसे—बैंगनी (violet) 390-430 nm, नीला (indigo) 430-470 nm, आसमानी (blue) 470-500 nm, हरा (green) 500-580 nm, पीला (yellow) 580-600 nm, नारंगी (orange) 600-650 nm, लाल (red) 647 nm या 650-760 nm। जब सूर्य का प्रकाश एक काँच के प्रिज्म से होकर निकलता है तो यह विभिन्न रंगों में बँट जाता है। रंगों के इस पुंज को ही दृश्य स्पेक्ट्रम (visible spectrum) कहते हैं। पूर्ण दृश्य स्पेक्ट्रम सात रंगों का बना होता है जो क्रमशः बैंगनी (violet), नीला (indigo), आसमानी (blue), हरा (green), पीला (yellow), नारंगी (orange) तथा लाल (red) हैं। लाल (red) रंग के बाद भी अधिक लम्बी किरणें होती हैं जो अदृश्य होती हैं, जैसे—अवरक्त किरणें (infrared rays)। इसी प्रकार से बैंगनी (violet) रंग में भी छोटी तरंग-दैर्ध्य वाली किरणें होती हैं। ये भी अदृश्य होती हैं, जैसे—पराबेंगनी किरणें (ultraviolet rays)। इस प्रकार सौर ऊर्जा का वह भाग जो सूर्य से पृथ्वी पर आता है, दृश्य स्पेक्ट्रम कहलाता है और इसका कुछ भाग ही प्रकाश-संश्लेषण (photosynthesis) में प्रभावी है।

प्रकाश में तरंग (wave) तथा कण (particle) दोनों के गुण होते हैं। प्रकाश केवल तरंग के रूप में ही गित (travel) नहीं करता, बिल्क कणों के रूप में भी गित (travel) करता है। प्रकाश ऊर्जा के कणों या समूहों (packets) को फोटोन (photons) कहते हैं। फोटोन, वास्तव में प्रकाश ऊर्जा की निश्चित मात्रा है जिसे क्वाण्टम (quantum) कहते हैं। प्रकाश की ऊर्जा की मात्रा निरन्तर (continuously) नहीं आती बिल्क पृथक् समूहों, क्वाण्टा के रूप में आती है। इस प्रकार सूर्य का प्रकाश विभिन्न आवृत्ति (frequency) के फोटोन की भाँति होता है। फोटोन की ऊर्जा ही प्रकाश के रंग का निर्धारण करती है।



जीव जन्तुओं की जैविक क्रियाओं के लिए प्रकाश एक महत्त्वपूर्ण कारक है। जीवों के लिए आवश्यक ऊर्जा प्रत्यक्ष या अप्रत्यक्ष रूप से सूर्य से ही प्राप्त होती है। पृथ्वी पर पहुँचने वाले कुल प्रकाश की मात्रा, मौसम की भिन्नता, पर्वतों की ऊँचाई, वातावरण की सघनता, आईता आदि परिस्थितियों पर निर्भर करती है। प्रकाश अपने गुण (Quality), तीव्रता (Intensity) तथा अवधि (Duration) के द्वारा पौधों को प्रभावित करता है। इसका प्रभाव पौधों व जन्तुओं के वितरण पर भी पड़ता है।

### वन एवं वन्य जीवन

वन 'जैव विविधता के विशिष्ट (Hotspots) स्थल' हैं। जैव विविधता का एक आधार उस क्षेत्र में पाई जाने वाली विभिन्न स्पीशीज की संख्या है। परंतु, जीवों के विभिन्न स्वरूप (जीवाणु, कवक, फर्न, पुष्पी पादप, सूत्रकृमि, कीट, पक्षी, सरीसृप इत्यादि) भी महत्वपूर्ण हैं। वंशागत जैव विविधता को संरक्षित करने का प्रयास प्राकृतिक संरक्षण के मुख्य उद्देश्यों में से एक है। प्रयोगों और वस्तुस्थिति के अध्ययन से हमें पता चलता है कि विविधता के नष्ट होने से पारिस्थितिक स्थायित्व भी नष्ट हो सकता है।

#### क्रियाकलाप

- जिन वन उत्पाद का आप प्रयोग करते हैं उनकी एक सूची बनाइए।
- आपके विचार में वन के निकट रहने वाला व्यक्ति किन वस्तुओं का उपयोग करता होगा?
- वन के अंदर रहने वाला व्यक्ति किन वस्तुओं का उपयोग करता होगा?
- अपने सहपाठियों के साथ चर्चा कीजिए कि उपर्युक्त व्यक्तियों की आवश्यकताओं में क्या कोई अंतर है अथवा कोई अंतर नहीं है एवं इनके कारण का भी पता लगाइए।

## दावेदार (स्टेकहोल्डर)

हम सभी विभिन्न वन उत्पादों का उपयोग करते हैं। परंतु वन संसाधनों पर हमारी निर्भरता में अंतर है। हममें से कुछ लोगों के पास कुछ विकल्प हैं, परंतु कुछ के पास नहीं। जब हम वन संरक्षण की बात सोचते हैं तो हमें यह भी सोचना होगा कि इसके दावेदार कौन हैं-

- (i) वन के अंदर एवं इसके निकट रहने वाले लोग अपनी अनेक आवश्यकताओं के लिए वन पर निर्भर रहते हैं।
- (ii) सरकार का वन विभाग जिनके पास वनों का स्वामित्व है तथा वे वनों से प्राप्त संसाधनों का नियंत्रण करते हैं।
- (iii) उद्योगपित जो तेंदु पत्ती का उपयोग बीड़ी बनाने से लेकर कागज मिल तक विभिन्न वन उत्पादों का उपयोग करते हैं, परंतु वे वनों के किसी भी एक क्षेत्र पर निर्भर नहीं रहते।
  - (iv) वन्य जीवन एवं प्रकृति प्रेमी जो प्रकृति का संरक्षण इसकी आद्य अवस्था में करना चाहते

आइए, देखें कि प्रत्येक समूह की वन आवश्यकताएँ क्या हैं? अथवा वन से उन्हें क्या प्राप्त होता है। स्थानीय लोगों को ईंधन के लिए जलाऊ (लकड़ी) छोटी लकड़ियाँ एवं छाजन की काफी मात्रा में आवश्यकता होती है। बाँस का उपयोग झोपड़ी बनाने, भोजन एकत्र करने एवं भंडारण के लिए होता है। खेती के औजार, मछली पकड़ने एवं शिकार के औजार मुख्यतः लकड़ी के बने होते हैं इसके



शिकार के औजार मुख्यतः लकड़ी के बने होते हैं इसके चित्र : वन्य जीवन का एक दृश्य अतिरिक्त वन, मछली पकड़ने एवं शिकार-स्थल भी होते हैं। विभिन्न व्यक्ति फल, नट्स तथा औषधि एकत्र करने के साथ-साथ अपने पशुओं को वन में चराते हैं अथवा उनका चारा वनों से एकत्र करते हैं।

क्या आप सोचते हैं कि वन संपदा का इस प्रकार उपयोग करने से इन संसाधनों का ह्रास हो जाएगा? यह मत भूलिए कि अंग्रेजों के भारत आने से पहले लोग इन्हीं वनों में शताब्दियों से रह रहे थे। अंग्रेजों ने वनों का नियंत्रण अपने हाथ में ले लिया। उनसे पहले यहाँ के मूल निवासियों ने ऐसी विधियों का विकास किया जिससे संपोषण भी होता रहे। अंग्रेजों ने न केवल वनों पर आधिपत्य जमाया वरन् अपने स्वार्थ के लिए उनका निर्ममता से दोहन भी किया। यहाँ के मूलिनवासियों को एक सीमित क्षेत्र में रहने के लिए मजबूर किया गया तथा वन संसाधनों का किसी सीमा तक अत्यधिक दोहन भी प्रारंभ हो गया। स्वतंत्रता के बाद वन विभाग ने अंग्रेजों से वनों का नियंत्रण तो अपने हाथ में ले लिया, परंतु प्रबंधन व्यवहार में स्थानीय लोगों की आवश्यकताओं एवं ज्ञान की उपेक्षा होती रही। अतः वनों के बहुत बड़े क्षेत्र एक ही प्रकार के वृक्षों जैसे कि पाइन (चीड़), टीक अथवा यूक्लिप्टस के वनों में परिवर्तित हो गए। इन वृक्षों को उगाने के लिए सर्वप्रथम सारे क्षेत्र से अन्य सभी पौधों को हटा दिया गया जिससे क्षेत्र की जैव विविधता बड़े स्तर पर नष्ट हो गई। यही नहीं स्थानीय लोगों की विभिन्न आवश्यकताओं, जैसेकि पशुओं के लिए चारा, औषिध हेतु वनस्पति, फल एवं नट इत्यादि की आपूर्ति भी नहीं हो सकी। इस प्रकार के रोपण से उद्योगों को लाभ मिला जो वन विभाग के लिए भी राजस्व का मुख्य स्रोत बन गया।

#### क्रियाकलाप

- किन्हीं दो वन उत्पादों का पता लगाइए जो किसी उद्योग के आधार हैं।
- चर्चा कीजिए कि यह उद्योग लंबे समय तक संपोषित हो सकता है। अथवा क्या हमें इन उत्पादों
   की खपत को नियंत्रित करने की आवश्यकता है?

क्या आप जानते हैं कि कितने उद्योग वन उत्पादों पर निर्भर करते हैं? टिम्बर (इमारती लकड़ी), कागज, लाख तथा खेल के समान इसके कुछ उदाहरण हैं।

उद्योग इन वनों को अपनी फैक्टरी के लिए कच्चे माल का स्रोत मात्र ही मानते हैं। निहित स्वार्थ से लोगों का एक बड़ा वर्ग सरकार से उद्योगों के लिए कच्चे माल को बहुत कम मूल्य पर प्राप्त करने में लगा रहता है। क्योंकि स्थानीय निवासियों की अपेक्षा इन व्यक्तियों की पहुँच सरकार में काफी ऊपर तक होती है, अतः उन्हें उस क्षेत्र के संपोषित विकास में कोई रुचि नहीं होती। उदाहरण के लिए, किसी वन के टीक के सभी वृक्षों को काटने के बाद, वे दूरस्थ वनों से टीक प्राप्त करने लगेंगे। उन्हें इस बात से कोई मतलब नहीं है कि वे इनका इष्टतम उपयोग सुनिश्चित करें जिससे कि वह आगे आने वाली पीढ़ियों को भी उपलब्ध हो सके। आपके विचार में लोगों को इस प्रकार व्यवहार करने से कैसे रोका जा सकता है?

अंत में हम चर्चा करते हैं प्रकृति एवं वन्य-जीवन प्रेमियों की जो वन पर निर्भर तो नहीं हैं, परंतु वनों के प्रबंधन में उनकी बात को बहुत महत्त्व दिया जाता है। संरक्षण का प्रारंभ बड़े जंतुओं जैसे कि शेर, चीता, हाथी एवं गैंडा से हुआ था अब उन्होंने संपूर्ण जैव विविधता को पूर्ण रूप से संरक्षित रखने के महत्त्व को समझ लिया है। परंतु क्या हमें ऐसे व्यक्तियों को पर्याप्त महत्त्व नहीं देना चाहिए जो वन तंत्र का भाग बन गए हैं इस बात के पर्याप्त प्रमाण हैं कि स्थानीय निवासी परंपरानुसार वनों के संरक्षण का प्रयास कर रहे हैं। उदाहरण के लिए, राजस्थान के विश्नोई सम्दाय के लिए वन एवं वन्य प्राणि संरक्षण उनके धार्मिक अनुष्ठान का भाग बन गया है। भारत सरकार ने पिछले दिनों जीव संरक्षण हेत् अमृता देवी विश्नोई राष्ट्रीय पुरस्कार की व्यवस्था की है। यह पुरस्कार अमृता देवी विश्नोई की स्मृति में दिया जाता है जिन्होंने 1731 में राजस्थान के जोधपुर के पास खेजराली गाँव में 'खेजरी वृक्षों' को बचाने हेतु 363 लोगों के साथ अपने आपको बलिदान कर दिया था। इसी तरह से उत्तराखण्ड में 'चिपको आंदोलन' स्थानीय निवासियों को वनों से अलग करने की नीति का ही परिणाम है। यह आंदोलन हिमालय की ऊँची पर्वत शृंखला में गढ़वाल के 'रेनी' नामक गाँव में एक घटना से 1970 के प्रारंभिक दशक में हुआ था। यह विवाद लकड़ी के ठेकेदार एवं स्थानीय लोगों के बीच प्रारंभ हुआ क्योंकि गाँव के समीप के वृक्ष काटने का अधिकार उसे दे दिया गया था। एक निश्चित दिन ठेकेदार के आदमी वृक्ष काटने के लिए आए जबकि वहाँ के निवासी पुरुष वहाँ नहीं थे। बिना किसी डर के वहाँ की महिलाएँ फौरन वहाँ पहुँच गईं तथा उन्होंने पेड़ों को अपनी बाँहों में भर कर (चिपक कर) ठेकेदार के आदिमयों को वृक्ष काटने से रोका। अंततः ठेकेदार को अपना काम बंद करना पड़ा।

उपर्युक्त वर्णित दृष्टान्तों से यह स्पष्ट है कि हम सभी का दायित्व है कि हम नवीन वृक्षों का

रोपण करें व उनकी देखभाल भी जरूरी हैं। साथ ही जहाँ तक हो सके हरे वृक्षों को काटने में मदद न करें।

खनिज पदार्थ:-खनिज क्या है? पृथ्वी के भूपटल का निर्माण विभिन्न प्रकार के तत्वों एवं यौगिकों से हुआ है। प्रकृति में यौगिक जिस रूप में पाये जाते हैं उनको खनिज कहते हैं। जैसे क्वार्टज, अभ्रक (माइका) हेमेटाइट तथा ग्रेनाइट आदि। खनिज कहाँ पाये जाते हैं? खनिज पृथ्वी के तल पर, पृथ्वी के गर्भ में तथा समुद्र में पाये जाते हैं। खनिज जैसे चूना पत्थर (लाइम स्टोन) का निर्माण, जीव जन्तुओं एवं पेड़ पौधों के अपघटन के फलस्वरूप होता है। पृथ्वी की अधिक गहराई में उच्च ताप एवं दाब के कारण एक खनिज दूसरे खनिज में परिवर्तित हो जाते हैं। जैसे-शैल से स्लेट, चूना पत्थर से संगमरमर (मार्बल), बलुआ पत्थर (सैंडस्टोन) से क्वार्टजाइट आदि बन जाता है।

इसी प्रकार कार्बन से बना ग्रेफाइट भी अधिक ताप एवं दाब के कारण हीरा में परिवर्तित हो जाता है।

खनिज कितने प्रकार के हो सकते हैं? खनिज मुख्य रूप से तीन प्रकार के होते हैं।

धात्विक खनिज • खनिज ईधन • अधात्विक खनिज

भारत में तीनों प्रकार के खनिज पाये जाते हैं। भारत में पाये जाने वाले खनिज एवं उनके प्राप्ति स्थान निम्नलिखित हैं-

## धातु का नाम अयस्क का नाम प्राप्ति स्थान

#### भारत में पाये जाने वाले धात्विक खनिज

लोहा हेमेटाइट बिहार, उड़ीसा, मध्य प्रदेश, कर्नाटक, तमिलनाडु, छत्तीसगढ़

ताँबा कॉपर पाइराइट आन्ध्र प्रदेश, बिहार, मध्य प्रदेश, राजस्थान

सोना -- कोलार खान-कर्नाटक, आन्ध्र प्रदेश

एलुमिनियम बॉक्साइट मध्य प्रदेश, छत्तीसगढ़, बिहार, उड़ीसा, तमिलनाडु, गुजरात, जम्मू-कश्मीर

मैंगनीज पाइरोलुसाइट मध्य प्रदेश, उड़ीसा, महाराष्ट्र, बिहार, आन्ध्र प्रदेश, गुजरात, राजस्थान, कर्नाटक

क्रोमियम क्रोमाइट बिहार, उड़ीसा, महाराष्ट्र, कर्नाटक

टाइटेनियम इल्मेनाइट केरल तथा तमिलनाडु के समुद्री तटों के रेत में

थोरियम मोनाजाइट केरल के समुद्री तटों के रेत में

यूरेनियम पिचब्लेंड बिहार

### भारत में पाये जाने वाले अधात्विक खनिज तथा खनिज ईंधन

चूना पत्थर वह सभी राज्यों में पाया जाता हैं। संगरमरमर के रूप में यह राजस्थान तथा मध्य प्रदेश में पाया जाता है।

अभ्रक बिहार, उड़ीसा, तमिलनाडु, राजस्थान।

बहुमूल्य पत्थर राजस्थान

पेट्रोलियम गुजरात, आसाम, अरब सागर के तटीय क्षेत्र तथा कावेरी, कृष्णा, गोदावरी के मुहानों के तटों पर। कोयला पश्चिम बंगाल, बिहार, तिमलनाडु

भारत में सोना, ताँबा, जिंक (जस्ता) तथा टंगस्टन खनिजों की मात्रा बहुत कम है तथा प्लेटिनम खनिज का पूर्ण अभाव है।

कुछ खिनज पदार्थ शुद्ध एवं स्वतन्त्र अवस्था में पाये जाते हैं जैसे सोना, चाँदी, ताँबा, सल्फर तथा कार्बन आदि। कुछ खिनज दो या दो से अधिक पदार्थों से मिलकर बने हो सकते हैं जैसे खिनज स्फिटिक (क्वार्टज  $\mathrm{SiO}_2$ ) सिलिकन तथा ऑक्सीजन से मिलकर बना है। इसी प्रकार ऐलुमिना  $\mathrm{Al}_2\mathrm{O}_3$  एलुमिनियम तथा ऑक्सीजन से मिलकर बना है। खिनज धातु तथा अधातु दोनों प्रकार के हो सकते हैं जैसे बॉक्साइट ( $\mathrm{Al}_2\mathrm{O}_3.2\mathrm{H}_2\mathrm{O}$ ), एलुमिनियम (धातु) तथा ऑक्सीजन (अधातु) का यौगिक है। धात्विक खिनज किन-किन रूपों में पाये जाते हैं? सभी अयस्क खिनज होते हैं परन्तु सभी खिनज अयस्क नहीं होते हैं। अयस्क धातुओं के ऑक्साइड, सल्फाइड, सल्फेट तथा कार्बेनिट के रूप में पाये जाते हैं।

अधात्विक खनिज में कोयला एवं पेट्रोलियम सिम्मिलित है। आइये अब हम एक और महत्वपूर्ण संसाधन जीवाश्म ईंधन अर्थात कोयला एवं पेट्रोलियम पर चर्चा करेंगे जो ऊर्जा के प्रमुख स्रोत हैं। औद्योगिक क्रांति के समय से हम उत्तरोत्तर अधिक ऊर्जा की खपत कर रहे हैं। इस ऊर्जा का प्रयोग हम दैनिक ऊर्जा की आवश्यकता की पूर्ति तथा जीवनोपयोगी पदार्थों के उत्पादन हेतु कर रहे हैं। ऊर्जा संबंधी यह आवश्यकता हमें कोयला तथा पेट्रोलियम से प्राप्त होती है।

इन ऊर्जा स्रोतों का प्रबंधन अन्य संसाधनों की अपेक्षा कुछ भिन्न तरीके से किया जाता है। पेट्रोलियम एवं कोयला लाखों वर्ष पूर्व जीवों की जैव-मात्रा के अपघटन से प्राप्त होते हैं। अतः चाहे हम जितनी भी सावधानी से इनका उपयोग करें फिर भी यह स्रोत भविष्य में समाप्त हो जाएँगे। अतः तब हमें ऊर्जा के विकल्पी स्रोतों की खोज करने की आवश्यकता होगी। यह संसाधन यदि वर्तमान दर से प्रयोग में आते रहे तो ये कितने समय तक उपलब्ध रहेंगे, इस बारे में विभिन्न आंकलनों के आधार पर हम कह सकते हैं कि हमारे पेट्रोलियम के संसाधन लगभग अगले 40 वर्षों में तथा कोयला अगले 200 वर्षों तक उपलब्ध रह सकते हैं।

परंतु जब हम कोयले एवं पेट्रोलियम की खपत के बारे में विचार करते हैं तो ऊर्जा के अन्य स्रोतों के विषय में विचार का एकमात्र आधार नहीं है। क्योंकि कोयला एवं पेट्रोलियम जैव-मात्रा से बनते हैं जिनमें कार्बन के अतिरिक्त हाइड्रोजन, नाइट्रोजन एवं सल्फर (गंधक) भी होते हैं। जब इन्हें जलाया (दहन किया) जाता है तो कार्बन डाइऑक्साइड, जल, नाइट्रोजन के ऑक्साइड तथा सल्फर के ऑक्साइड बनते हैं। अपर्याप्त वायु (ऑक्सीजन) में जलाने पर कार्बन डाइऑक्साइड के स्थान पर कार्बन मोनोऑक्साइड बनाती है। इन उत्पादों में से नाइट्रोजन एवं सल्फर के ऑक्साइड तथा कार्बन मोनोऑक्साइड विषैली गैसें हैं तथा कार्बन डाइऑक्साइड एक ग्रीन हाउस गैस है। कोयला एवं पेट्रोलियम पर विचार करने का एक अन्य दृष्टिकोण यह भी है कि ये

कार्बन के विशाल भंडार हैं, यदि इनकी संपूर्ण मात्रा का कार्बन जलाने पर कार्बन डाइऑक्साइड में परिवर्तित हो गया तो वायुमंडल में कार्बन डाइऑक्साइड की मात्रा अत्यधिक हो जाएगी जिससे तीव्र वैश्विक ऊष्मण होने की संभावना है। अतः इन संसाधनों के विवेकपूर्ण उपयोग की आवश्यकता है।

#### क्रियाकलाप

कोयले का उपयोग ताप-बिजलीघरों में एवं पेट्रोलियम उत्पाद जैसे कि डीजल एवं पेट्रोल का यातायात के विभिन्न साधनों-मोटरवाहन, जलयान एवं वायुयान- में प्रयोग किया जाता है। आज के युग में विद्युत साधित्रों एवं यातायात में विद्युत- के प्रयोग के बिना जीवन की कल्पना भी नहीं की जा सकती। अतः क्या आप कुछ ऐसी युक्ति सोच सकते हैं जिससे कोयला एवं पेट्रोलियम के उपयोग को कम किया जा सके?

कुछ सरल विकल्पों से हमारे ऊर्जा की खपत में अंतर पड़ सकता है। आनुपातिक लाभ-हानि एवं पर्यानुकूल पर विचार कीजिए :

- (i) बस में यात्रा, अपना वाहन प्रयोग में लाना अथवा पैदल/साइकिल से चलना।
- (ii) अपने घरों में बल्ब, फ्लोरोसेंट ट्यूब का प्रयोग करना।
- (iii) लिफ्ट का प्रयोग करना अथवा सीढ़ियों का उपयोग करना।
- (iv) सर्दी में एक अतिरिक्त स्वेटर पहनना अथवा हीटर या सिगड़ी का प्रयोग करना।

कोयला एवं पेट्रोलियम का उपयोग हमारी मशीनों की दक्षता पर भी निर्भर करता है। यातायात के साधनों में मुख्यतः आंतरिक दहन-इंजन का उपयोग होता है। आजकल अनुसंधान इस विषय पर केंद्रित है कि इनमें ईंधन का पूर्ण दहन किस प्रकार सुनिश्चित किया जा सकता है जिससे कि इनकी दक्षता भी बढ़े तथा वायु प्रदूषण को भी कम किया जा सके।

हमारे संसाधन सीमित हैं अतः हम सभी को इस अमूल्य संसाधनों को बहुत ईमानदारी एवं आवश्यकतानुरूप ही उपयोग करना चाहिए। अत्यधिक दोहन हमारे एवं हमारी पीढ़ी के लिए हानिकारक होगा।

# • जलीय पौधों एवं जानवरों का प्राकृतिक वास-

जीव प्राकृतिक रूप से जिस परिवेश या वातावरण में रहते हैं वह उस जीव का वासस्थान (habitat) कहलाता है। वास स्थान प्रायः निम्नलिखित प्रकार का होता है-

- (i) स्थलीय वासस्थान (Terrestrial habitat)
- (ii) जलीय वासस्थान (Aquatic habitat)
- (iii) वृक्षवासीय (Arboreal habitat)
- (iv) वायवीय वासस्थल (Aerial habitat)

आइये पहले हम जलीय वास स्थान की चर्चा करते हैं।

जलीय वासस्थान (Aquatic habitat)—ऐसे जीव जो जल में रहते हैं, जलीय कहलाते हैं। ऐसे जीव जल में ही अपने जीवन की सारी क्रियाओं को संपादित करते हैं। स्थलीय वासस्थानों की अपेक्षा जलीय वासस्थान का स्थायित्व अधिक होता है अर्थात इनके अजैव घटकों में बदलाव अपेक्षाकृत कम आता है।

जलीय वासस्थानों को फिर दो भागों में बाँटा गया है।

- (क) मृदुजलीय वासस्थान (Freshwater habitat)
- (ख) समुद्री वासस्थान (Marine habitat)
- (क) मृदुजलीय वासस्थान-मृदुजल (अलवणीय जल), जैसे नदी, तालाब, झील में रहनेवाले जीव मृदुजलीय कहलाते हैं। उदाहरण—मछिलयाँ, जैसे रोहू, कतला, मांगुर, भाकुर, टेंगर, पढ़नी, गिरई, नैन, सिधरी, चेल्हवा आदि तथा अन्य जन्तुओं में हाइड्रा, घोंघा, सीपी, मेढक, जलीय सर्प तथा अनिगनत जलीय कीट केकड़ा, झींगा मछली भी सम्मिलित है। पौधों में जलकुम्भी, कुमुदिनी, कमल, सिघाड़ा, हाइड्रिला, वैलिसनेरिया, पिस्टिया तथा पोटेमोजिटान जैसे विकसित पौधे तथा शैवाल जैसे यूलोथ्रिक्स, स्पाइरोगाइरा, क्लेमाइडोमोनास तथा युग्लीना आदि।



चित्र : कुछ सामान्य मृदु जलीय वनस्पतियाँ

मृदुजल में रहने वाले जीव जो स्थिर जल (जैसे—झील, तालाब) में रहते हैं स्थिर जलीय (stagnant water) जीव कहलाते हैं तथा जीव जो बहते जल (नदी, झरना) में पाए जाते हैं बहते जलीय (running water) जीव कहलाते हैं।



चित्र : वन्य जीवन का एक दृश्य

(ख) समुद्री वासस्थान—समुद्र के लवणीय जल में रहने वाले जीव समुद्री कहलाते हैं। उदाहरण— मछिलयाँ, जैसे स्कोलिओडान, टोरपीडो, समुद्री घोड़ा (hippocampus), शैवाल की कुछ प्रजातियाँ तथा क्रस्टेशिया (Crustacea) की अधिकांश प्रजातियाँ (केकड़ा, झींगा, लोब्सटर)



समुद्री वासस्थान के कई भाग होते हैं-

- (i) समुद्रतटीय जीव (Littoral)—ऐसे जीव समुद्र के किनारे के बालू में या जल में आंशिक रूप से डूबे चट्टानों से चिपके रहते हैं। जैसे, समुद्री केकड़े (sea crabs), बार्नेकल (barnacle)
- (ii) तलप्लवी जीव (Pelagic)—ऐसे जीव समुद्र की सतह के जल में पाए जाते हैं। ऐसे जीव या तो परिप्लावी (plankton), होते हैं या तरण-जलधर (nekton) होते हें। परिप्लावी में प्रचलन अंग नहीं होते हैं और ये जल की धारा के साथ बहते हैं। उदाहरण—अनेक प्रोटोजोअन, ऑरीलिया या जेलिफिश इत्यादि। तरण-जलधर प्रचलन अंगों के द्वारा स्वतंत्र रूप से गति करते हैं। उदाहरण—अधिकांश समुद्री मछलियाँ, हेल, टर्टल इत्यादि।
- (iii) अगाधजलीय जीव (Abyssal)—ऐसे जीव समुद्र की अति गहराई (4000-6000 मीटर) वाले जल में रहते हैं। उदाहरण—चिपटे मत्स्य (flat fish), स्टारफिश या तारा मछली, ऑक्टोपस आदि।
- (iv) समुद्रतलीय जीव (Benthic)—ऐसे जीव समुद्रतल (bottom) पर पाए जाते हैं। इनमें से कुछ स्थावर (sedentary) होते हैं और तल से अथवा किसी वस्तु से चिपके रहते हैं; जैसे समुद्री स्यंज, सी-एनीमोन। कुछ समुद्रतलीय जीव स्वतंत्र रूप से जल पर विचरण करते हैं, जैसे समुद्री अर्चिन, ब्रिटल-स्टार।



चित्र : कुछ समुद्री जन्तु

मृदुजलीय जीव समुद्र जल में जीवित नहीं रह सकते हैं। उसी प्रकार समुद्री जीव भी मृदु जल में नहीं रह सकते हैं। समुद्री जल में लवण की सांद्रता (salt concentration) बहुत अधिक होती है। अतः मृदुजलीय जीव को अगर समुद्री जल में रख दिया जाए तो उसके शरीर से जल निकल जाएगा। उसी प्रकार अगर समुद्री जीव को मृदु जल में रख दिया जाए तब अधिक जल प्रवेश करने के कारण उसका शरीर फूल जाएगा।

स्थलीय वासस्थान (Terrestrial habitat)—ऐसे जीव जो स्थल या जमीन पर निवास करते हैं, स्थलीय (terrestrial) कहलाते हैं। ऐसे वासस्थानों में मरुभूमि, पहाड़ों, निदयों जैसी बाधाओं के कारण एकरूपता नहीं पाई जाती है। स्थलीय वासस्थानों में निवास करने वाले कुछ जीवों के उदाहरण पेड़, फर्न, शेर, ऊँट, मनुष्य इत्यादि हैं। स्थल पर रहनेवाले कुछ जीव, जैसे केंचुआ (earthworm) मिट्टी में सुरंग बनाकर रहते हैं तथा वे अंतः भूमिक (subterranean) जीव कहलाते हैं।

मरूद्भिद पौधों एवं जानवरों का प्राकृतिक वास—मरूस्थल में जल की अत्यन्त कमी होती है। सूर्य के प्रकाश की तीव्रता भी अधिक होती है जिससे गर्मी अत्यधिक होती है साथ ही तेज हवाओं का झोंका भी चलता है। ऐसे वातावरण को ही मरूस्थलीय वातावरण (Desert Environment) कहते हैं। इस प्रकार के वातावरण में उगने वाले पौधों को शुष्कोद्भिद पौधे (Xerophytic plants) कहते हैं। नागफनी (opuntia), भरभाड़/पीली कटेली (Argemone), बबूल (Acacia) मदार (AK), घीक्वार (Aloe), यक्का (Yucca), कनेर (Nerium), कैजुराइना (Casuarina) केपेरिस (Capparis), रसकस (Ruscus) साइकस, चीड़ आदि मरूदिभद् पादपों के उदाहरण हैं।





चित्र : कुछ मरूद्भिद पौधे

उपर्युक्त उदाहरण के पौधों में बाह्य तथा आन्तरिक संरचनाओं में भी उस वातावरण में रहने के लिए परिवर्तन होता है। जैसे इन पौधों की पत्तियाँ या तो कटी फटी होंगी या सूई के आकार की या बहुत मोटी (चर्मवत) हो सकती है। जड़ तन्त्र अत्यधिक विकसित तथा अधिक गहरायी तक वृद्धि करती है। तना छोटा, काष्ठीय, शुष्क, कठोर तथा मोटी छाल से ढकी रहती है।

मरूस्थलीय जन्तुओं में भी पौधों की ही भाँति परिवर्तन पाया जाता है। कुछ सामान्य लक्षण निम्नलिखित हैं—

- 1. मरुस्थल के छोटे जीव, जैसे चूहा, साँप, केकड़ा दिन के समय बालू में बनाए गए सुरंग में रहते हैं तथा रात को जब तापक्रम घट जाता है तब ये भोजन की खोज में बिल से बाहर निकलते हैं। इस तरह ये रात्रिचर (nocturnal) होते हैं।
- 2. अत्यधिक गर्मी से सुरक्षा तथा वाष्पन (evaporation) द्वारा जल की क्षिति को रोकने के लिए शरीर के ऊपरी सतह पर कई विशेषताएँ पाई जाती हैं। जैसे, मरुस्थलीय लिजर्ड मोलौक (Moloch) की त्वचा नमी सोखने वाली होती है।
- 3. मरुस्थली केकड़े, मकड़ियों तथा सर्पों में सुरक्षा के लिए विषग्रंथि (poison gland) तथा दंश (sting) होते हैं।
- 4. कुछ मरुस्थली जंतु अपने शरीर के मेटाबोलिज्म (कोशिकीय श्वसन) से उत्पन्न जल का उपयोग करते हैं।

मरुस्थलीय अनुकूलन का सर्वश्रेष्ठ उदाहरण ऊँट (camel) है। इसका उपयोग मरुभूमि में परिवहन के

लिए होता है। इसीलिए यह मरुभूमि का जहाज (ship of the desert) कहलाता है। ऊँट के निम्नलिखित अनुकूलन होते हैं।

- 1. इसके खुर की निचली सतह चौड़ी और गद्देदार होती है, जो इसे गर्म बालू पर चलने में सहायता देती है। ऊँट प्रति घंटा 20-25 km की दर से, प्रतिदिन 100 km की दूरी, बगैर भोजन और जल के तय कर सकता है।
- 2. बिना भोजन और जल के ऊँट 10-12 दिन तक सामान्य रह सकता है और उपलब्ध होने पर एक बार में 50 लीटर जल पी सकता है। यह जल शीघ्र ही शरीर के विभिन्न भागों में वितरित हो जाता है।
- 3. इसके पीठ पर, संचित भोजन के रूप में वसा एक जगह इकट्ठा रहता है, जिसे **हंप** (hump) कहते हैं। भोजन नहीं मिलने पर इस वसा का उपयोग ऊर्जा के लिए होता है।
- 4. उत्सर्जन (excretion) के लिए इसके शरीर से बहुत कम मात्रा में जल बाहर निकलता है। प्रतिदिन इसके शरीर से बाहर निकलने वाला मूत्र मात्र आधा लीटर है। यह करीब-करीब सूखे मल (faecal matter) का त्याग करता है।



चित्र : कुछ मरुस्थलीय जन्तु

5. इसकी आँखों की **बरौनियाँ** (eyelashes) लंबी होती हैं तथा नासारंध्र (nostrils) मांसल होते हैं। आवश्यकता पड़ने पर ये बंद होकर बालू मिश्रित हवा के प्रवेश को रोकते हैं।

6. शरीर भार के करीब 25 प्रतिशत के निर्जलीकरण (dehydration) की अवस्था में भी यह सामान्य रहता है।

ऊँट की ही भाँति मरूद्भिद् वातावरण में रहने वाले जन्तुओं में भिन्न-भिन्न प्रकार का परिवर्तन पाया जाता है और इन्हीं परिवर्तनों के कारण वह जन्तु उस वातावरण में रहने के लिए उपयुक्त होता है।

• पर्यावरण असन्तुलन में मानव का हस्तक्षेप—प्रकृति ईश्वर का एक अनुपम वरदान है जिसमें जीव-निर्जीव सभी शामिल है जिन्हें आज पर्यावरण के नाम से जाना जाता है। प्रकृति के समस्त अवयवों में कैसे सामंजस्य बना रहे, यही आज की सबसे बड़ी समस्या है। महामारी, तूफान, अतिवृष्टि, कड़ाके की अप्रत्याशित ठण्ड तथा शरीर को झूलसा देने वाली भीषण गर्मी एवं मौसम में होने वाले परिवर्तन सभी इस बात का संकेत दे रहे हैं कि प्रकृति का सामंजस्य असंतुलित हो रहा है। आज विज्ञान एवं तकनीकी की बदौलत हमने हर क्षेत्र में अनेक उपलब्धियाँ हासिल तो की हैं पर ''अच्छा एवं और अच्छा'' की चाह में हमने कितना कुछ खोया इसका आभास हमें तब हुआ जब हमने अपनी ही प्रकृति के रंग को उड़ा डाला। विकास की दौड़ में विनाश कर डाला अगर अब भी हमें होश नहीं आया तो वह दिन दूर नहीं जब आज के चाँद की तरह हमारी पृथ्वी भी बंजर एवं सुनसान होकर रह जायेगी। आज औद्योगिकीकरण के कारण पर्यावरण CO., SO., NO., CH., CO, O, इत्यादि गैसों एवं वायुप्रदूषक कणों के कारण प्रदूषित हो रहा है। इन गैसों के कारण फेफड़ों का कैंसर तथा दमा हो रहा है। वायू में फैले वायू प्रदूषक कणों जैसे सीसे के कण नाड़ी मण्डल के रोग, कैडिमयम तत्व श्वसन विष का कार्य करता है। आर्सेनिक, चारा वाले पौधों को विषाक्त कर देता है। फ्लोराइड्स की सान्द्रता बढ़ने से हरित हीनता और ऊतकक्षय उत्पन्न होता है। इसी प्रकार वनों एवं हरित वृक्षों को काट कर पृथ्वी को नंगा बनाने का प्रयास तेजी से पनप रहा है। इसका प्रभाव यह होगा कि हमें पर्याप्त मात्रा में शुद्ध ऑक्सीजन नहीं मिलेगा तथा अकाल, बाढ़ तथा भूकम्प आदि को बढ़ावा मिल रहा है। साथ ही साथ वायुमण्डल के ताप में वृद्धि भी होगी। जल बिना जीवन नहीं और जीवन है जीव और वन। हमारी नदियाँ गंगा, यमुना जैसी अन्य निदयों का जल किस तरह का है किसी से छिपा नहीं है। यमुना दिल्ली की सारी गन्दगी को साफ करती है और स्वयं काली पड़ गयी है। गंगा में कानपुर की टेनरी से निकला पानी मिलने से लाल पड़ गयी है। स्नान के दौरान आप सभी ने देखा होगा। आज नदियों के जल को हम सभी ने उद्योगों के निकले त्याज्य पदार्थों एवं कचरे को फेंक कर गन्दा बना दिया। विविध रसायनों के मिलने से जल पीने लायक नहीं रह गया है। शहरों में घरेलू अपमार्जक भी नालियों के माध्यम से निकलकर नदियों में गिरता है। इससे भी जल हानिकारक होता जा रहा है। इस तरह मानव के किये कार्यों से जल भी मूल रूप में आज उपलब्ध नहीं हो पा रहा है। इसका पता BOD (Biological Oxygen demand) की मात्रा के मापन से होता है। शुद्ध जल का BOD एक ppm से कम होता है।

मानव ने कृषि कार्यों में विविध प्रकार के रसायनों का प्रयोग करना शुरू कर दिया है। कृषि की उपज बढ़ाने में उपयोगी शाकनाशी (Herbitides), खरपतवारनाशी (weedicides), कीटनाशी (Insecticides), पेस्टीसाइड्स (Pesticides) आदि का प्रयोग बढ़ गया है। ये खाद्य शृंखला के माध्यम से मनुष्यों तक सतत रूप से पहुँच रहा है। इनका कुप्रभाव मनुष्य तथा पौधों पर निरन्तर पड़ रहा है।

मानव अपने सुख सुविधा के लिए नित्य नये-नये विकल्पों की तलाश करता रहता है। जैसे परमाणु ऊर्जा में प्रयुक्त रेडियोधर्मी तत्वों के उपयोग। रेडियोधर्मी तत्वों में  $\alpha$ ,  $\beta$  तथा  $\gamma$  किरणें निकलती हैं यदि इनका नियन्त्रण नहीं हो पाता है तो जीवधारियों के लिए घातक सिद्ध होता है। चरनोबिल दुर्घटना तथा फुकोसिमा न्यूक्लियर दुर्घटना कितने भयावह थे केवल प्रभावित जनता ही समझ सकती है।

उपर्युक्त वर्णित कुछ तथ्यों से यह निष्कर्ष निकाला जा सकता है कि पर्यावरण असन्तुलन में मानव का योगदान नित्यप्रति बढ़ता ही जा रहा है। समय रहते यदि विविध संस्थाएँ व सरकारें सचेत नहीं होंगी तो भविष्य का परिणाम घातक होगा ऐसा संकेत प्रकृति में कभी-कभी प्रकट हो जाता है। इस तरह कहा जा सकता है कि मानव का हस्तक्षेप प्राकृतिक वातावरण को असन्तुलन करने में है।

# वन्य जीव जन्तुओं का संरक्षण कार्यक्रम ः

इकाई-5 में सम्पूर्ण विवरण दिया गया है।

### • ग्रीन हाउस गैसीय प्रभाव

वायुमण्डल में ऊष्मारोधी गैसों [जलवाष्प, कार्बन डाइऑक्साइड  $(CO_2)$ , नाइट्रस ऑक्साइड तथा मेथेन, आिद] की मात्रा बढ़ जाने के कारण वायुमण्डल के औसत ताप में वृद्धि को **ग्रीन हाऊस प्रभाव** (green house effect) कहते हैं। ग्रीन हाऊस वास्तव में काँच या ग्लास के बने छोटे पौधा घर होते हैं जिनमें पौधों को विशेष रूप से शीत से बचाने हेतु उगाया जाता है। ग्रीन हाऊस सूर्य की ऊष्मा ग्रहण करते हैं। ग्रीन हाऊस के ग्लास पेनल्स (glass pannels) प्रकाश को अन्दर आने देते हैं, परन्तु ऊष्मा को बाहर निकलने से रोकते हैं। इससे पूरा हाऊस गर्म हो जाता है और पौधे शीत में भी गर्म रहते हैं। यह क्रिया उसी प्रकार है, जैसे धूप में खड़ी कार के अन्दर गर्मी हो जाती है।

वायुमण्डल में कार्बन डाइऑक्साइड  $(CO_2)$  की अधिकता व कुछ अन्य गैसों के कारण निम्नलिखित प्रक्रिया होती है—

- (i) सूर्य की ऊष्मा के कारण पृथ्वी की सतह गर्म हो जाती है और यह अवशोषित ऊष्मीय ऊर्जा (heat energy) विकिरित हो जाती है।
- (ii) अधिकांश ऊष्मा अन्तरिक्ष में वापस विकिरित हो जाती है, परन्तु इसका कुछ भाग वायुमण्डल द्वारा रोक लिया जाता है और पुनः पृथ्वी सतह पर वापस हो जाती है।

(iii) Jestignal ue cet/Varefine le le partie ( $CO_2$ ) अणु ऊष्पा रोकने को सुगम बनाते हैं, ये अणु पृथ्वी की सतह से विकरित ऊष्पा को रोकने में कम्बल (blanket) की भाँति कार्य करते हैं, जैसे— यदि रात में कम्बल के कारण शरीर ऊष्पा अन्दर ही रुक जाती है और शरीर गर्म रखती है। इस प्रकार सरल शब्दों में पृथ्वी की सतह से विकिरित हो रही गर्मी का रुकना ही ग्रीन हाऊस प्रभाव कहलाता है। (The trapping of warmth radiating from earth is known as Green House Effect)

प्रमुख ग्रीन हाऊस गैसें निम्नलिखित हैं—

| कार्बन डाइऑक्साइड (CO <sub>2</sub> ) | जीवाश्म ईंधन (fossil fuel), जैसे—कोयला एवं पेट्रोलियम पदार्थ व |
|--------------------------------------|----------------------------------------------------------------|
|                                      | लकड़ी दहन                                                      |
| नाइट्रस ऑक्साइड $(N_2O)$             | उर्वरक (fertilizers) एवं जन्तु विशिष्ट                         |
| मेथेन (CH <sub>4</sub> )             | बायोगैस (biogas) तथा जीवाणु अपघटन                              |
| क्लोरोफ्लोरो कार्बन (CFCs)           | फ्रेऑन (freon) ठण्डा करने वाला पदार्थ (refrigerant)            |
| हेलन्स (हेलोकार्बन्स, Cx, Fx, Brx    | ) अग्नि बुझाने वाले उपकरण (fire extinguishers)                 |



चित्र : वायुमण्डल को प्रदूषित करने वाले घटक

# • ओजोन क्षरण या ओजोन अवक्षय (Ozone depletion)

# ओजोन कवच का छिद्र एवं त्वचा कैन्सर (Ozone Shield Hole and Skin Cancer)

पृथ्वी के वायुमण्डल को दो परतों (layers) में विभाजित किया जा सकता है। हम वायुमण्डलीय गैसों युक्त क्षोभमण्डल या ट्रोपोस्फियर (troposphere) में रहते हैं। पृथ्वी से 50 km ऊपर समतापमण्डल या स्ट्रेटोस्फियर (stratosphere) में ओजोन का कवच (ozone shield) स्थित है जो सूर्य की पराबैंगनी किरणों (UV rays) को अवशोषित करता है। पराबैंगनी (ultraviolet) किरणों में उत्परिवर्तन (mutation),



त्वचा का कैन्सर (skin cancer) तथा मोतियाबिन्द (cataract) जैसे रोग होते हैं। इन किरणों से हमारी प्रतिरोधण क्षमता (immunity) पर भी कुप्रभाव पड़ता है। ओजोन कवच (ozone shield) के न होने पर हमारा स्वास्थ्य तथा भोजन स्रोत भी प्रभावित होते हैं।

स्ट्रेटोस्फियर में प्राण रक्षक ओजोन  $(O_3)$  की परत पतली होती जा रही है। ओजोन की पतली परत को ओजोन छेद (ozone hole) भी कहते हैं। स्ट्रेटोस्फियर में क्लोरीन परमाणु (chlorine atom) के विसरण से ओजोन की कमी होती है। क्लोरीन का एक परमाणु 1,00,000 ओजोन के अणुओं को नष्ट करता है। ये क्लोरीन परमाणु क्लोरोफ्लोरोकार्बन (CFCs) के विघटन से बनते हैं।

$$Cl + O_3 \rightarrow ClO + O_2$$
  
 $ClO + O \rightarrow Cl + O_2$ 

फ्रेऑन (freon) सबसे अधिक घातक क्लोरोफ्लोरोकार्बन है जिसका प्रयोग रेफ्रिजरेटर, एअर-कण्डिशनर, गहेदार सीट या सोफों में काम आने वाली फोम तथा ऐरोसॉल स्त्रे में होता है। विश्व के अधिकतर देश क्लोरोफ्लोरोकार्बन का प्रयोग सन् 2000 तक ही करने पर एकमत थे। परन्तु CFCs आज भी प्रयुक्त हो रहा है। CFCs से क्लोरीन किस प्रकार दक्षिणी ध्रुव (south pole) में पहुँचकर ओजोन छिद्र (ozone hole) बनाती है, इस क्रिया-विधि को स्पष्ट करने के लिए आर0 एस0 मारिओ मोलिना (R.S. Mario Molina), पॉल क्रुटजन (Paul Crutzen) तथा एफ0 शेर वुड रोलैण्ड (F. Sher Wood Rawland) को सन् 1995 रसायन-विज्ञान में नोबेल पुरस्कार प्रदान कर सम्मानित किया गया।

ब्रिटिश वैज्ञानिकों के अनुसार, सर्दी के महीनों में वायुमण्डलीय क्लोरीन के एकत्रित होने के कारण, अण्टार्किटका (Antarctica) में ओजोन की परत महीन (thin) हो रही है। गर्मियों में इसमें थोड़ा-सा परिवर्तन हो जाता है लेकिन यह एक चेतावनी है कि हमें क्लोरोफ्लोरोकार्बन (CFCs) का निर्माण कम अथवा बन्द करना चाहिए।

• धरती का बढ़ता तापमान या वैश्विक तपन या विश्वव्यापी उष्णता (Global Warming)

पृथ्वी के औसत तापक्रम में उत्तरोत्तर वृद्धि को वैश्विक तपन या विश्वव्यापी उष्णता (global warming) कहते हैं। पिछले सौ वर्षों में पृथ्वी की सतह का तापक्रम लगभग 0.8°C बढ़ा है और सन् 1960 से इसमें 0.5°C की वृद्धि हुई है। वैज्ञानिक एकमत से इस तथ्य से सहमत है कि वैश्विक तपन का प्रमुख कारण वायुमण्डल में कुछ विशेष गैसों जिनमें मेथेन, नाइट्स आक्साइड, कार्बन डाइऑक्साइड, जलवाष्प, आदि की सान्द्रता बढ़ना है।

# वैश्विक तपन का दुष्प्रभाव (Harmful Effect of Global Warming)

1. मौसम परिवर्तन (Changing Weather) : अधिकांश स्थानों में वैश्विक तपन के प्रभाव से गर्म दिन अधिक होंगे तथा ठण्डे दिन बहुत कम रह जायेंगे। ग्रीन हाऊस गैसों के बढ़े तापमान के कारण मौसम में भयंकर बदलाव आएगा। अधिक तीव्र गर्म हवाएँ लम्बे समय तक चलना सामान्य बात होगी। भयंकर तूफान बाढ़ तथा सूखा की दशाएँ भी अधिक तीव्रता से होंगी। विश्व मौसमी विजयी संघठन (World Metereological Organization) की रिपोर्ट के अनुसार, 8 सबसे अधिक गर्म वर्षों के साथ 2000-2009 का दशक अब तक के आँकड़ों के अनुसार, सबसे गर्म रहा है। कनाडा तथा रूस के उत्तरी ध्रुवीय वातावरण का ताप पिछले दशक के सापेक्ष विश्व औसत का दुगना हो गया है। विगत वर्षों में बांग्लादेश में समय-समय पर भयंकर समुद्री तूफान व विगत वर्षों में आई बाढ़ से हजारों लोग मरे हैं। अमेरिका में कैलीफोर्निया से लेकर जर्जिया तक सूखा

पडा।

- 2. समुद्र जल स्तर का उठना (Rising Sea Level) : वैश्विक तपन के प्रभाव से समुद्र के जल स्तर का उठना निश्चित है। अधिक ताप से हिमखण्ड (glaciers), हिम शीर्ष (ice caps) तथा हिमपतेंं (ice sheets) पिघलती है जिससे समुद्र जल में वृद्धि होती है। सन् 1870-2000 की अवधि में समुद्र जल स्तर औसतन 1.7 mm प्रति वर्ष बढ़ा है। अमेरिका के राष्ट्रीय उड्डयन एवं अन्तरिक्ष प्रशासन (NASA) के सेटेलाइट्स ने दर्शाया है कि समुद्र जल स्तर अब और तेजी से लगभग 3 mm प्रतिवर्ष बढ़ रहा है औसतन (1993-2009) अवधि में यह जल स्तर 48 mm बढ़ गया है, यदि इसी प्रकार वृद्धि होती रही तो भविष्य में द्वीपों पर स्थित अनेक देश, नगर, आदि समुद्र में डूब जायेंगे। संसार की कुल मानव आबादी के दस प्रतिशत मनुष्य समुद्र तटीय भागों के समीप ही रहते हैं। कुछ हजार वर्षों के दौरान हॉलैण्ड 12 फुट समुद्र के नीचे धँस चुका है। वेनिस नगर को बचाने के लिए 1.2 मील लम्बी समुद्री दीवार बनाई गई है।
- 3. ओजोन परत का ह्रास (Ozone Exhaustion): पृथ्वी की सतह से 15 से 30 किमी ऊपर ओजोन गैस की एक प्राकृतिक परत (layer) होती है यह सूर्य की पराबैंगनी-β (Ultraviolet-β) विकिरणों को रोकती है, वैश्विक तपन के कारण यह परत क्षीण हो रही है, वैश्विक तपन में ऊष्मा को ट्रोपीस्फीयर में ही रोक लिया जाता है, स्ट्रेटोस्फीयर (जहाँ पर ओजोन परत है) में कम ऊष्मा पहुँचती है जिससे वह अधिक ठण्डा होता है। इसमें तथा क्लोरीन, ब्रोमीन, आदि के कारण ओजोन परत का हास होता है। पराबैंगनी-β विकिरणों के पृथ्वी पर आने से मनुष्यों व जन्तुओं में बीमारियाँ उत्पन्न होती है।
- 4. पौधों पर प्रभाव (Effect on Plants): वैश्विक तपन के प्रभाव से अनेक प्रकार के वासस्थान (habitats) नष्ट हो सकते हैं जिससे लाखों जातियों की विलुप्ति का खतरा बढ़ गया है। जिन वातावरणीय दशाओं में आज पेड़-पौधे हैं उन्हें अनुकूल बनाने में वर्षों लगे हैं। वातावरणीय दशाओं में कोई भी बड़ा परिवर्तन पौधे पर प्रतिकूल प्रभाव डालेगा, इससे उनका वृद्धि-काल, प्रजनन-चक्र आदि बदल जाएगा और कुछ जातियाँ विलुप्त भी हो जाएंगी। वर्षा की अनियमितता, सूखा व बाढ़ की भिन्नता, कृषि-फसलों सहित अन्य पादप जातियों को प्रभावित करेगी।
- 5. जन्तुओं पर प्रभाव (Effect on Animals): जन्तुओं पर भी वैश्विक तपन का प्रभाव प्रत्यक्ष देखने को मिलता है। अधिक ताप न सह पाने के कारण तथा वासस्थानों (habitats) से नष्ट होने से अनेक जातियाँ विलुप्त हो गई हैं अथवा विलुप्त होने के कगार पर हैं। वैश्विक तपन के कारण ध्रुवीय बर्फ पिघलने से ध्रुवीय रिछ (polar bear) के आवास (habitat) नष्ट हुए हैं जिससे इस जाति को अधिक उत्तर की ओर पलायन के लिए बाध्य होना पड़ा है। कोस्ट रिका (Cost Rica) के वर्षा वनों में मोन्टवर्ड गोल्डन टोड (Monteverde Golden Toad) एक स्थानीय (endemic) जाति के रूप में निवास करती थी। अत्यधिक गर्मी के कारण वहाँ के सरोवर सूख जाने से टोड की यह जाति अब पूर्णतया विलुप्त हो चुकी है। समुद्री बायोम

(Ocean Biome) में गर्म जल के कारण कोरल रीफ (Coral Reep) को भी अस्तित्व बचाने के लिए संघर्ष करना पड़ रहा है।

- 6. मनुष्यों पर प्रभाव (Impact on Mankind) : पौधों तथा जन्तुओं के बिना मनुष्य का इस ग्रह पर जीवित रह पाना असम्भव है। हम पौधों व जन्तुओं पर मूल रूप से ऑक्सीजन व भोजन के साथ ही लगभग सभी चीजों के लिए आश्रित हैं। हिमखण्ड, इस ग्रह पर ताजे जल के संग्रहालय (freshwater reservoirs) के रूप में कार्य करते हैं। अतः इनके पिघल जाने से पीने के लिए पानी भी नहीं मिल पाएगा। अधिक उष्ण किटबन्थ क्षेत्र (tropical zone) के प्रसार से विभिन्न संक्रामक रोग, जैसे—मलेरिया आदि का प्रकोप अधिक होगा। अधिक वर्षा तथा बाढ़ के कारण जीवन व सम्पत्ति की हानि भी अधिक होगी। वैश्विक तपन के कारण अत्यधिक वर्षा की आवृत्ति (frequency) बढ़ती है जिससे कभी-कभी सीवर तन्त्र का जल बाहर निकलकर (water flow) पीने के जल के साथ मिल जाता है और अनेक जल प्रदूषण द्वारा होने वाली बीमारियाँ (water borne diseases) हो जाती हैं।
- 7. हिमखण्डों का पिघलना (Melting of Glaciers): वर्ल्ड ग्लेशियर मोनीटेरिंग सर्विस (World Glacier Monitoring Service—WGMS) ने सन् 2005 में 442 हिमखण्डों (glaciers) के सर्वे में पाया कि संसार के 90 प्रतिशत हिमखण्ड, पृथ्वी के गर्म होने से पिघल रहे हैं। एन्डेस (Andes) तथा हिमालय के अधिक ऊँचे हिमखण्डों के पिघलने से ताजे जल (freshwater) की कमी हो सकती है।
- 8. वायु गुणवत्ता में गिरावट (Worsening Air Quality): अधिक गर्म दिनों में हाइड्रोकार्बन्स तथा अन्य वाष्पशील कार्बनिक पदार्थ अधिक मात्रा में निकलते हैं और अधिक ताप उन सभी रासायनिक क्रियाओं को तीव्र करता है जिनमें स्मोग (smog) बनता है। स्मोग से अस्थमा (asthama) जैसी साँस की बीमारियाँ होती हैं।

# वैश्विक तपन के सकारात्मक प्रभाव (Positive Effect of Global Warming)

वैश्विक तपन को यदि नियन्त्रित कर लिया जाए तो सकारात्मक प्रभाव भी हो सकता है। ग्रीन हाऊस गैसों की अधिकता की अनुपस्थिति में वायुमण्डल की जलवाष्प तथा कार्बन डाइऑक्साइड  $(CO_2)$  परस्पर कार्य करके पृथ्वी पर जीवन के लिए सुगम तापक्रम बनाते हैं। वायु में कार्बन डाइऑक्साइड  $(CO_2)$  की अधिकता से पौधों की वृद्धि अधिक होती है जिससे अधिक संख्या में वृक्ष उगाए जा सकते हैं। वैश्विक तपन बढ़ने के कारण सर्दियों में तापमान बढ़ता है जिससे उण्डे बर्फ के तूफान कम आते हैं।

# वैश्विक तपन के कारण (Reason of Global Warming)

वैश्विक तपन के प्रमुख कारण निम्नलिखित हैं—

- 1. ग्रीन हाऊस गैसें (Green House Gases)
- 2. औद्योगीकरण (Industrialization)
- 3. क्लोरोफ्लोरोकार्बन (Chlorofluorocarbon, CFC) का प्रयोग
- 4. ऐरोसोल्स तथा कालिख (Aerosols and Soot)
- 5. वनों का कटान (Deforestation)



चित्र : ग्रीन हाउस गैसों के कारण पृथ्वी से विकरित ऊष्मा पुनः पृथ्वी पर आती है

# वैश्विक तपन कम करने के उपाय (Global Warming Solutions)

- 1. स्वचालित वाहनों पर नियन्त्रण (Control on Automobiles)
- 2. ऊर्जा दक्षता को बढ़ाना (Improve Energy Efficiency) : कम ऊर्जा की खपत से कार्बन डाइऑक्साइड  $(CO_2)$  भी कम मुक्त होती है। अतः पिछले 20 वर्षों में विभिन्न उद्योगों तथा उपभोक्ताओं द्वारा अधिक ऊर्जा दक्षता वाले मोटर-कार, उपकरण, आदि प्रयोग किए जा रहे हैं।
- 3. नवीनीकरण योग्य ऊर्जा का विकास (Development of Renevable Energy) : सूर्य, वायु, पादप पदार्थ, आदि ऊर्जा के स्वच्छ सुरक्षित तथा नवीनीकरण योग्य ऐसे स्रोत हैं जो वैश्विक तपन नहीं करते। अतः सरकार की नीति इनके प्रयोग को बढ़ावा देने की होनी चाहिए।
- 4. प्राकृतिक गैस का प्रयोग (Use of Natural Gas) : यद्यपि प्राकृतिक गैस भी जीवाश्म ईंधन (fossil fuel) है, परन्तु इसके प्रयोग से कोयले व तेल की अपेक्षा कम कार्बन डाइऑक्साइड उत्पन्न होती है। अतः विद्युत् उत्पादन में कोयले के स्थान पर प्राकृतिक गैसें तथा गृह कार्यों में तेल के स्थान पर भी प्राकृतिक

गैस का प्रयोग किया जाना चाहिए।

- 5. परिरक्षक वन-संरक्षण (Preserve Plant Forests) : वन, कार्बन डाइऑक्साइड को कम करते हैं। अतः वनों के कटान (deforestation) पर नियन्त्रण से तथा खाली भूमि पर वृक्ष लगाने से वैश्विक तपन को कम किया जा सकता है।
- 6. अन्य उपाय (Other Methods) : ऊर्जा बचाने के उपाय अपने दैनिक जीवन में करने चाहिए। बिजली के बल्व के स्थान पर काम्पेक्ट फ्लोरीसेन्ट लाइट (Compact Florescent Light-CFL) प्रयोग करने से 70% प्रतिशत कम ऊष्मा निकलती है। घरों में टेलीविजन, स्टिरियो, कम्प्यूटर, एअर कन्डीशनर्स का उपयोग केवल आवश्यकता के समय ही करना चाहिए।

### मूल्यांकन

### बहुविकल्पीय प्रश्न

- 1. पृथ्वी के चारों और कितनी ऊँचाई तक वायुमण्डल का विस्तार होता है-
  - (क) लगभग 15 Km (ख) लगभग 60 Km
  - (ग) लगभग 100 Km (घ) लगभग 150 Km
- 2. समुद्री जन्तु है-
  - (क) यूग्लीना (ख) हाइड्रा
  - (ग) जोंक (घ) तारामीन

## अति लघु उत्तरीय प्रश्न

- 3. दो मृदु जलीय जन्तुओं के नाम लिखिए।
- 4. सी एफ सी (CFC) का पूरा नाम लिखिए।
- 5. वन्य जीव जन्तुओं के संरक्षण में कार्य करने वाली किसी एक संस्था का नाम लिखिए।
- 6. ग्रीन हाउस प्रभाव किसे कहते हैं?

# लघु उत्तरीय प्रश्न

- 7. वैश्विक तपन करने के उपाय बताइये।
- पौधों पर वैश्विक तपन के प्रभाव को बताइये।
- स्पाइरोगाइरा तथा स्कोलियोडॉन (कुत्ता मछली) का चित्र बनाइये?

### दीर्घ उत्तरीय प्रश्न

- 10. धरती के बढ़ते तापमान पर एक लेख लिखिए।
- 11. पर्यावरण में असन्तुलन उत्पन्न करने में मानव के हस्तक्षेप पर प्रकाश डालिए।
- 12. प्राकृतिक संसाधन कौन-कौन से हैं? किसी एक प्राकृतिक संसाधन को विस्तृत रूप से समझाइये।

# इकाई - 9

# ऊष्मा, प्रकाश एवं ध्वनि

इस इकाई को पढ़ने के बाद प्रशिक्षु जान सकेंगे-

- उष्मा :- उष्मा का मापन एवं ताप मापन की युक्ति
  उष्मा की मात्रा की निर्भरता
  उष्मा द्वारा अवस्था परिवर्तन
  उष्मा का प्रभाव
  उष्मा का संचरण
  वस्तुओं के उष्मीय गुणों का उपयोग
- 2. प्रकाश :- प्रकाश के विभिन्न स्त्रोत
  प्रकाश का संचरण
  प्रकाश का परावर्तन
  समतल दर्पण द्वारा प्रतिबिम्ब का बनना
  गोलीय दर्पण द्वारा प्रतिबिम्ब का बनना
  प्रकाश का अपवर्तन
  गोलीय लैसों द्वारा प्रतिबिम्ब का बनना
- 3. ध्विन :- ध्विन की उत्पत्ति
  ध्विन का संचरण (ठोस, द्रव एवं गैस माध्यम में)
  ध्विन का आयाम, आवृत्ति, आवर्तकाल तथा वेग
  विभिन्न माध्यमों में ध्विन की चाल
  ध्विन का परावर्तन एवं प्रतिध्विन

#### 1. उष्मा

### • उष्मा का मापन एवं ताप मापन की युक्ति

प्रशिक्षु जाड़े तथा गर्मी के मौसम से परिचित है। जाड़े में ऊनी कपड़ा पहनना पसंद करते हैं और गर्मी में हल्के सूती कपड़े पहनना पसंद करते हैं। बुखार होने पर अपना शरीर गर्म प्रतीत होता है। प्रशिक्षु जानते हैं कोल्ड ड्रिंक ठंडी तथा चाय गर्म होती है।

किसी वस्तु का ठंडी या गर्म ... इस बात पर निर्भर करता है कि हमारा हाथ उस वस्तु से गर्म है या ठंडा इस बात को एक क्रिया कलाप द्वारा समझा जा सकता है।

#### क्रिया कलाप

चित्र के अनुसार तीन पात्र लेकर किसी कागज पर 1, 2, 3 लिखकर क्रमशः इन पर चिपका दें। पात्र 1 में बर्फ युक्त ठण्डा पानी, पात्र 2 में गर्म पानी तथा पात्र 3 में गुनगुना पानी लें। पात्र 1 में दायें हाथ की अंगुलियाँ, पात्र



2 में बायें हाथ की अगुलियाँ थोड़ी देर तक डुबाएं। इसके बाद दोनों हाथ की अंगुलियों को पात्र 3 के गुनगुने पानी में डालें। क्या अनुभव होता है? दायें हाथ की अंगुलियाँ गर्मी तथा बायें हाथ की अंगुलियाँ ठण्डक का अनुभव करती है। बायें हाथ की अंगुलियाँ गुनगुने पानी की तुलना में ठंडी होने के कारण गर्मी का अनुभव करती है जबिक दायें हाथ की अंगुलियाँ गुनगुने पानी की तुलना में गर्म होने के कारण ठण्डक का अनुभव करती हैं। इससे स्पष्ट है कि कोई वस्तु गर्म है अथवा ठण्डी इसका निर्णय हम छूकर कर सकते हैं परन्तु वस्तु कितनी गर्म है या ठण्डी इसका सही ज्ञान करने के लिए हम एक विशेष प्रकार का यंत्र उपयोग करते हैं जिसे तापमापी या धर्मामीटर कहते हैं। आइये जाने कि तापमापी क्या है? तथा इससे ताप कैसे मापते हैं?

### तापमापी या थर्मामीटर (Thermameter)

बुखार आने पर किसी मनुष्य का ताप डाक्टरी थर्मामीटर के द्वारा तथा किसी वस्तु या पदार्थ का ताप प्रयोगशाला थर्मामीटर (तापमापी) द्वारा नापा जाता है। तापमापी को बनाने के लिये पदार्थ के किसी ऐसे गुण को चुनते हैं जो ताप के साथ-साथ निरन्तर बदलता रहता है इसे ताप मापक गुण कहते हैं।

### प्रयोगशाला तापमापी :

प्रयोगशाला में प्रयोगशाला तापमापी का प्रयोग करते हैं। प्रयोगशाला में तापमापी बनाने के लिए काँच की एक पतली नली लेते हैं। इस नली का निचला सिरा (भाग) बल्ब की आकृति का होता है। इस नली में पारा या एल्कोहल भर कर दूसरे सिरे को बन्द कर देते हैं। काँच की नली को बर्फ के टुकड़ों में रखते हैं। ठण्डा होने पर पारा जहाँ ठहरता है, काँच की नली के इस बिन्दु पर 0°C अंकित करते हैं, जिसे अधोबिन्द कहते हैं। इसके पश्चात नली को उबलते हुए जल की वाष्प में रखते हैं। ऊष्मा पाकर प्रसार के फलस्वरूप पारा जिस बिन्दु पर ठहरता है, उस बिन्दु पर 100°C अंकित करते हैं। इस बिन्दु को ऊर्ध्व बिन्दु कहते हैं। इन दोनों बिन्दुओं के बीच की लम्बाई को 100 बराबर भागों में बांट लेते हैं। इस प्रकार बांटे गये प्रत्येक भाग का मान 1°C होगा।



फारेनहाइट पैमाने में तापमापी के अधोबिन्दु (जल के हिमांक) को 32°F तथा ऊर्ध्वबिन्दु (जल का क्वथनांक) को  $212^{\circ}$ F अंकित करते हैं। इन दोनों बिन्दुओं के बीच की लम्बाई को 180 बराबर भागों में बांट लेते हैं। इसका प्रत्येक भाग  $1^{\circ}$ F कहलाता है।

फारेनहाइट पैमाने पर 180 खाना = सेल्सियस पैमाने पर 100 खाना सेल्सियस ताप तथा फारेनहाइट ताप में सम्बन्ध :

यदि सेल्सियस में ताप C तथा फारेनहाइट में ताप F है

तो 
$$\frac{C}{100} = \frac{F - 32}{180}$$
 या  $\frac{C}{5} = \frac{F - 32}{9}$ 

#### • डाक्टरी थर्मामीटर

शरीर का ताप ज्ञात करने के लिए डॉक्टर, डॉक्टरी तापमापी (थर्मामीटर) प्रयोग में लाते हैं। यह तापमापी प्रयोगशाला तापमापी की तरह एक लंबी, तथा बारीक काँच की नली होती है किन्तु बल्ब या



घुंडी के पास नली कुछ टेढ़ी बनी होती है। डॉक्टरी थर्मामीटर के बल्ब या घुंडी के पास नली टेढ़ी होने के कारण शरीर का ताप जानने के लिये जब थर्मामीटर को मुँह से बाहर निकालते हैं, तो पारे का तल अपने आप नीचे नहीं गिरता और पाठ्यांक (रीडिंग) नोट करने में हमें आसानी होती है।

### यह भी जानें :-

- (1) स्वस्थ मनुष्य के शरीर का ताप  $37^{\circ}\mathrm{C}$  या  $98.6^{\circ}\mathrm{F}$  होता है।
- (2) ऊष्मा एक प्रकार की ऊर्जा है जिसका प्रवाह अधिक ताप की वस्तु से कम ताप की वस्तु की ओर होता है।
- (3) किसी वस्तु का ताप उस वस्तु के समस्त अणुओं की गतिज ऊर्जा के औसत द्वारा निर्धारित होता है।
- (4) किसी वस्तु की ऊष्मा उस वस्तु के समस्त अणुओं की स्थितिज ऊर्जा और गतिज ऊर्जा के योग के बराबर होती है।
- (5) किन्हीं दो वस्तु में ऊष्मा की मात्रा समान होने पर ताप असमान हो सकता है। इसकी प्रकार दो वस्तुओं मैं उष्मा की मात्रा अलग-अलग होने पर ताप समान हो सकता है।

प्रशिक्षु से चर्चा करें कि डाक्टरी थर्मामीटर या प्रयोगशाला थर्मामीटर में द्रव के स्थान पर क्या भरा जाता है। प्रशिक्षु जानते हैं कि इन थर्मामीटर मैं पारा भरा जाता है जिसमें वे सभी विशेषतायें होती हैं जो आवश्यक होती है।

#### यह भी जानें-

- (1) पारे के तापमापी के अतिरिक्त अन्य तापमापी भी है जो अलग-अलग गुण के आधार पर बनाये गये हैं। जैसे स्थिर-आयता गैस तापमापी, प्रतिरोध तापमापी, ताप युग्म तापमापी।
- (2) उत्तापमापी वे तापमापी हैं जो बहुत उच्च ताप जैसे भट्टियों का ताप, सूर्य का ताप नापने के काम आते हैं।
- (3) रदरफोर्ड अधिकतम और न्यूनतम तापमापी, यह तापमापी दिन भर का अधिकतम और न्यूनतम ताप नापने के काम आता है।
- (4) S.I. पद्धति में ताप का मात्रक केल्विन है जो वैज्ञानिक कैल्विन के नाम पर रखा गया है। परम ताप पैमाने पर ताप T कैल्विन तथा सेल्सियस पैमाने पर C हो तो

T = C + 273.15

### विभिन्न तापमापियों की पटाक्षें

| तापमापी      | निम्नतम सीमा | उच्चतम सीमा |  |
|--------------|--------------|-------------|--|
| पारा तापमापी | −30°C        | 300°C       |  |
| गैस तापमापी  | −268°C       | 1500°C      |  |

| प्लैटिनम प्रतिरोध तापमापी  | −200°C | 1200°C        |
|----------------------------|--------|---------------|
| तापयुग्म तापमापी           | −200°C | 1600°C        |
| सम्पूर्ण विकिरण उत्तापमापी | 800°C  | कोई सीमा नहीं |
| अदृश्य तन्तु उत्तापमापी    | 600°C  | 2700°C        |

### ऊष्मा की मात्रा की निर्भरता

किसी वस्तु के ताप में वृद्धि के लिए आवश्यक ऊष्मा किन-किन कारणों पर निर्भर करती है? एक कप पानी गर्म करने के लिए भगोने को ज्यादा देर तक स्टोव पर रखना होता है या एक भगोना जल को गर्म करने के लिए।

हम देखते हैं कि एक कप में रखे पानी को गर्म करने में कम ऊष्मा देनी पड़ती है जबकि भगोने में रखे अधिक पानी को गर्म करने में अधिक ऊष्मा देनी पड़ती है अर्थात् अधिक ऊष्मा की आवश्यकता होती है।

किसी वस्तु के ताप में वृद्धि के लिए आवश्यक ऊष्मा की मात्रा उस बस्तु के द्रव्यमान (m) पर निर्भर करती है।

क्या ऊष्मा की मात्रा और अन्य कारकों पर भी निर्भर करती है?

#### • क्रिया कलाप

- काँच के दो बीकर लें।
- एक बीकर के आधे भाग (1/2 भाग) तक जल भरें। जल का ताप थर्मामीटर की सहायता से ज्ञात करें। यह
   जल का प्रारम्भिक ताप है।
- अब इस जल को स्पिरिट लैम्प की सहायता से इतना गर्म करें कि जल का ताप प्रारम्भिक ताप से 20°C बढ़
   जाय। साथ ही यह भी नोट करें कि ताप वृद्धि में कितना समय लगा।
- अब दूसरे बीकर में पहले बीकर के बराबर जल लेकर इसे इतना गर्म करें कि जल का ताप प्रारम्भिक ताप से
   40°C बढ़ जाय। इसी के साथ-साथ ताप वृद्धि में लगा समय भी नोट करें।

# क्या अनुभव होता है?

दूसरे बीकर के जल को गर्म करने में पहले बीकर की अपेक्षा अधिक समय लगता है। इससे क्या निष्कर्ष निकलता है? अधिक ताप तक गर्म करने पर अधिक और कम ताप तक गर्म करने पर कम ऊष्मा लगती है। ऊष्मा की मात्रा वस्तु के तापान्तर (प्रारम्भिक तथा अन्तिम ताप के अन्तर △t) पर निर्भर करती है।

#### क्रिया कलाप

- काँच के दो बीकर (A, B) लें।
- एक बीकर (A) के 1/2 भाग को जल से भरें।
- दूसरे बीकर (B) में भी उसके आधे भाग तक वनस्पति तेल लें।
- दोनों बीकरों को बारी-बारी से जलते हुए स्पिरिट लैम्प से
   3-3 मिनट तक गर्म करें।
- थर्मामीटर की सहायता से दोनों बीकरों में रखे द्रवों का ताप
   ज्ञात करें।

दोनों द्रवों में से किस द्रव का ताप अधिक है? तेल का ताप अधिक है। इससे क्या निष्कर्ष निकलता है?



समान द्रव्यमान की भिन्न-भिन्न वस्तुओं को समान समय तक (समान परिमाण में ऊष्मा देने पर) गर्म करने पर उनके ताप में वृद्धि अलग-अलग होती है।

इससे स्पष्ट होता है कि किसी पदार्थ के ताप में निश्चित वृद्धि के लिए आवश्यक ऊष्मा की मात्रा उस पदार्थ के द्रव्यमान (m) और तापान्तर  $\Delta t$  (ताप वृद्धि) के अलावा एक और कारक पर निर्भर करती है। यह कारक क्या है? यह कारक उस पदार्थ की विशिष्ट ऊष्मा (S) है, जो पदार्थ की प्रकृति पर निर्भर करता है।

ऊष्मा की मात्रा वस्तु के द्रव्यमान, तापान्तर तथा विशिष्ट ऊष्मा पर निर्भर करती है।

ऊष्मा का मापन

किसी पदार्थ को निश्चित ताप तक गर्म करने के लिए आवश्यक ऊष्मा की गणना निम्नलिखित सूत्र से की जाती

# ऊष्मा की मात्रा = पदार्थ का द्रव्यमान × पदार्थ की विशिष्ट ऊष्मा × पदार्थ की तापवृद्धि

यदि ऊष्मा की मात्रा को 'Q', पदार्थ के द्रव्यमान को 'm', पदार्थ की ताप वृद्धि को  $\Delta t$  से प्रदर्शित किया जाय तो उक्त सूत्र को निम्न प्रकार से लिखते हैं।

$$[Q = m \times S \times \Delta t]$$

एक ग्राम जल के ताप में 1°C का ताप परिवर्तन के लिए ऊष्मा की एक निश्चित मात्रा की आवश्यकता होती है। ऊष्मा की इस निश्चित मात्रा को, ऊष्मा का मात्रक मान लिया गया है। ऊष्मा का मात्रक कैलोरी है।

एक ग्राम जल के ताप में  $1^{\circ}\mathrm{C}$  की वृद्धि के लिए आवश्यक ऊष्मा की मात्रा 1 कैलोरी होती हैं

#### अवस्था परिवर्तन :-

### पदार्थ की कितनी अवस्थाएँ हैं?

पदार्थ की तीन अवस्थाएँ-ठोस, द्रव तथा गैस होती हैं।

### पदार्थ की विभिन्न अवस्थाओं में परिवर्तन कैसे सम्भव है

#### क्रिया कलाप

- काँच के एक बीकर में बर्फ के कुछ टुकड़े लें।
- उसे स्पिरिट लैम्प में गर्म करें। क्या होता है?
- बर्फ (ठोस अवस्था से) जल (द्रव अवस्था) में बदलने लगती है।
   अब उसे और गर्म करें। क्या होता है?
- जल (द्रव अवस्था से) गैसीय अवस्था (भाप) में बदल जाता है।
   बर्फ (ठोस) ग़र्म करने पर जल (द्रव) गर्म करने पर गैस (भाप)
   इसका प्रकार क्रिया कलाप मोम के दुकड़े के साथ भी करें। क्या होता है?
   मोम (ठोस) गर्म करने पर पिघला मोम (द्रव) गर्म करने पर गैस

पदार्थ को गैसीय अवस्था से द्रव तथा ठोस अवस्था में परिवर्तन कैसे किया जाता है? ठंडा करने पर पदार्थ गैस से द्रव अवस्था में तथा और अधिक ठंडा करने पर ठोस अवस्था में बदल जाता है।

गैस (भाप) <u>ठंडा करने पर</u> जल <u>ठंडा करने पर</u> बर्फ

# कुछ और भी जानें :

- (1) कुछ पदार्थ ऐसे होते हैं जो गर्म करने पर ठोस अवस्था से सीधे गैसीय अवस्था में परिवर्तित हो जाते हैं। ऐसे पदार्थों को ऊर्ध्वपातज पदार्थ कहते हैं। जैसे-कपूर, नौसादर आदि।
  - (2)  $4.18 \times 10^3$  जूल कार्य से उतनी ही ताप वृद्धि होती है जितनी 1 किलो-कैलोरी ऊष्णा से अतः
  - ा किलो कैलोरी =  $4.18 \times 10^3$  जूल
    - 1 कैलोरी = 4.18 जूल
- (3) एक किलो कैलोरी वह उष्मा है जो 1 किलोग्राम जल का ताप 14.5°c से 15.5°c तक बढ़ाने के लिये आवश्यक है।

# गलनांक (Melting Point)

#### क्रिया कलाप

एक भगौने या बीकर में बर्फ का टुकड़ा लें। इस टुकड़े को गर्म करें। क्या देखते हैं? बर्फ पिघलने लगती है तथा पानी में बदलने लगती है। प्रारम्भ में पिघले हुए पानी का ताप  $0^{\circ}$ C ही रहता है। पानी का ताप तब तक  $0^{\circ}$ C रहता है जब तक कि पूरी बर्फ पिघल कर पानी में न बदल जाय।

वह निश्चित ताप जिस पर कोई ठोस गरम करने पर द्रव में बदलता है उस पदार्थ का गलनांक कहलाता हैं। बर्फ का गलनांक 0°C है। क्वथनांक : (Boiling Point)

भगौने के 0°C वाले पानी को गर्म करें। पानी का ताप बढ़ता है। पानी का ताप जब 100°C तक पहुँच जाता है तो दी गयी ऊष्मा से पानी का ताप नहीं बढ़ता है और पानी उबलने लगता है। स्पष्ट है कि 100°C ताप पर पानी को दी गयी ऊष्मा पानी को जलवाष्प में बदल देती है अर्थात् द्रव को गैसीय अवस्था में बदलने में व्यय होती है।



वह निश्चित ताप जिस पर कोई द्रव उबलता है और गैसीय अवस्था में बदलता है वह दिये गये द्रव का क्वथनांक कहलाता है। पानी का क्वथनांक  $100^{\circ}$ C है। विशेष :

- (1) अवस्था परिवर्तन में पदार्थ का ताप नियत रहता है।
- (2) अवस्था परिवर्तन के लिये दी गयी उष्मीय ऊर्जा पदार्थ के अणुओं में स्थितिज ऊर्जा के रूप में संरक्षित हो जाती है जिसे गुप्त ऊष्मा कहते हैं।
  - (3) 0°C बर्फ को गर्म करने पर 0°C का द्रव बनता है। बर्फ की गुप्त उष्म 80 कैलोरी/ग्राम होती है।
  - (4) 100°C का द्रव 100°C की वाष्प में बदलता है। वाष्प की गुप्त ऊष्मा 540 कैलोरी/ग्राम होती है।
  - (5) साधारणतया ठोस को गर्म करने पर आयतन बढ़ता है।
  - (6) कुछ ठोस जैसे बर्फ, नर्म लोहा, एन्टीमनी और विष्मथ को गर्म करे पर उनका आयतन घटता है।
  - (7) जिन ठोसों को गर्म करने पर उनका आयतन बढ़ता है उनका गलनांक दाब बढ़ाने पर बढ़ता है।
  - (8) जिन ठोसों को गर्म करने पर उनका आयतन घटता है उनका गलनांक दाब बढ़ाने पर घटता है।
  - (9) ठोस में अशुद्धि मिली होने पर उसका गलनांक कम हो जाता है।

### • वाष्पन (Evaporation)

#### क्रिया कलाप

- किसी फैली प्लेट में स्प्रिट कमरे में रखें।
- कुछ समय पश्चात स्त्रिट में क्या परिवर्तन होता है?
- स्प्रिट वाष्प में परिवर्तित हो जाती है।

साधारण ताप पर किसी द्रव का वाष्प में परिवर्तित होने की घटना वाष्पन कहलाता है। वाष्पन से द्रव का ताप कम हो जाता है।

वाष्पन की क्रिया निम्नलिखित बातों पर निर्भर करती है।

- (1) द्रव के पृष्ठ के क्षेत्रफल पर
- (2) द्रव के ताप पर
- (3) द्रव के आस-पास की हवा के ताप पर
- (4) हवा के प्रवाह पर
- (5) वायु में आद्रता की मात्रा पर
- (6) द्रव के गुण पर
- (7) वायु के दाब पर

# दैनिक जीवन में वाष्पन का उपयोग

- (1) व्यक्ति को बुखार होने पर माथे पर गीला रूमाल रखा जाता है। जिससे वाष्पन के कारण बुखार कम हो जाता है।
- (2) मिट्टी के घड़े में पानी का ठंडा होना।
- (3) जमीन पर गर्मी के दिनों पानी का छिड़काव करना।
- (4) गर्मी में कुत्ते अपनी जीभ बाहर निकालकर ठंडक महसूस करते हैं।

# क्वथन और वाष्पन में अन्तर

| क्वथन                       | वाष्पन                    |
|-----------------------------|---------------------------|
| (1) क्वथन एक नियत ताप       | वाष्पन किसी भी ताप पर हो  |
| पर होता है।                 | सकता है।                  |
| (2) इसके लिये बाहर से       | इसके लिए बाहर से ऊर्जा की |
| ऊर्जा दी जाती है।           | आवश्यकता नहीं होती।       |
| (3) यह द्रव के प्रत्येक भाग | यह द्रव के केवलऊपरी       |
| में होता है।                | सतह पर होता हैं।          |

- (4) यह तीव्र प्रक्रिया है।
- (5) यह प्रक्रिया में इस आवाज होती है।
- (6) इस प्रक्रिया में द्रव का ताप कम नहीं होता।

यह एक धीमी प्रक्रिया है। प्रक्रिया में कोई आवाज नहीं होती। इस प्रक्रिया में द्रव का ताप कम हो जाता है।

#### ऊष्मा का प्रभाव (Effect of heat)

ठोस का ताप बढ़ने पर प्रसार की घटना हम निम्नलिखित क्रिया कलापों से दिखा सकते हैं-

(1) ठोसों का प्रसार : (Expansion of Solid)

आपने देखा होगा कि स्टील के दो गिलास जब एक दूसरे में फंस जाते हैं तो उन्हें गर्म करके आसानी से निकाल लेते हैं। इसी प्रकार जैम की बोतल के ढक्कन को गर्म करके इसे आसानी से खोल लेते हैं। आइये विचार करें कि ऐसा क्यों करते हैं।

#### क्रिया कलाप

- धातु की एक छोटी गेंद लें।
- धातु का एक छल्ला लें जिसका आन्तरिक व्यास इतना हो
   कि गेंद आसानी से छल्ले के आर-पार जा सके।
- गेंद को स्पिरिट लैम्प की सहायता से कुछ देर तक गरम करें।
- अब गेंद को छल्ले के ऊपर रखें।



धातु में प्रसार का प्रयोग

देखें क्या होता है? गर्म करने पर गेंद छल्ले के आर-पार नहीं जा रही है। क्यों? गर्म करने पर गेंद का आकार बढ़ जाता है अर्थात् इसमें प्रसार हो जाता है।

- गेंद को छल्ले के ऊपर थोड़ी देर तक रखा रहने दें जिससे गेंद ठंडी हो जाय।
- क्या होता है? गेंद छल्ले के अन्दर से होती हुई नीचे चली जाती है। क्यों? ठंडी होने पर गेंद का आकार कम हो जाता है। इससे क्या निष्कर्ष निकलता है?
  - 1. धातु के ठोस पदार्थ गरम करने पर फैलते हैं तथा ठंडा करने पर सिकुड़ते हैं।
  - 2. गरम करने पर ठोसों के आकार में वृद्धि को प्रसार कहते हैं।

द्रवों का प्रसार : (Expansion of Liquid)

क्या आप जानते हैं कि गर्म करने पर द्रवों में भी प्रसार होता है?

#### क्रिया कलाप

- काँच की एक परखनली लें।
- िकसी बर्तन में पानी (जल) लेकर उसमें थोड़ा लाल रंग अथवा लाल दवा डालें ताकि जल रंगीन हो जाय।
- रंगीन जल से परखनली को पूरा भरें।
- रबर अथवा कार्क की एक डॉट ऐसी लें जिसके मध्य में आर-पार छेद हो।
- कार्क में छेद में काँच की एक बारीक (पतली) नली चित्र के अनुसार
   डालें और डॉट को परखनली में लगा दें।
- काँच की नली में रंगीन जल कुछ ऊँचाई तक चढ़ जायेगा। काँच की नली में जल की सतह पर निशान लगाएँ।
- अब परखनली को स्पिरिट लैम्प से थोड़ी देर तक गर्म करें। काँच की नली में जल के तल को देखें।
  - जल के तल में क्या परिवर्तन होता है? नली में जल का तल पहले की तुलना में अधिक ऊँचाई तक चढ़ जाता है।
- अब परखनली को ठंडा करें। नली में जल के तल को फिर देखें। क्या होता है? नली में जल का तल नीचे
   आ जाता है।

## इससे क्या निष्कर्ष निकलता है?

ठोस की भाँति द्रव भी गर्म करने पर फैलते हैं तथा ठंडा करने पर सिकुड़ते हैं, अर्थात् द्रवों में भी प्रसार होता है।

# गैसों का प्रसार (Expansion of Gas)

इसी प्रकार आप जानना चाहेंगे कि क्या गर्म करने पर गैसों में भी प्रसार होता है?

#### क्रिया कलाप

- काँच की एक खाली तथा स्वच्छ छोटी बोतल लें।
- इसके मुँह पर बिना फूला हुआ गुब्बा बाँधें।
- अब बोतल को चौड़े मुँह के बर्तन में रखें।
- इस बर्तन में गर्म पानी डालें।
- बोतल के मुँह में लगे गुब्बारे का अवलोकन करें।





क्या होता है? गुब्बारा फूल जाता है। गुब्बारा क्यों फूल जाता है? गर्म जल के कारण बोतल के अन्दर की हवा गर्म होकर फैलती है जो बोतल के मुँह पर लगे गुब्बारे में प्रवेश करती है जिसके कारण गुब्बारा फूल जाता है।

 बोतल को गर्म जल से निकाल कर ठंडा करें तथा गुब्बारे का अवलोकन करें। क्या होता है? गुब्बारा पुनः पिचक जाता है।

इससे क्या निष्कर्ष निकलता है?

ठोस तथा द्रव की भाँति गर्म करने पर गैसों में भी प्रसार होता है। गर्म करने पर गैसें फैलती हैं तथा ठंडा करने पर सिकुड़ती हैं।

### ऊष्मा का संचरण (Transmission of heat) :-

गर्म चाय स्टील के खाली गिलास में डालने से क्या होता है? गिलास गर्म हो जाता है। धातु की छड़ के एक सिरे को गर्म करने पर क्या होता है? कुछ देर में छड़ का दूसरा सिरा भी गर्म हो जाता है। गर्म चाय से भरा कप कुछ देर खुला रख देने से चाय के ताप में क्या परिवर्तन होता है? चाय ठंडी हो जाती है। आग के सामने कुछ दूरी पर खड़े होने पर क्या अनुभव होता है? शरीर गर्म होने लगता है।

इन सभी क्रियाओं से क्या निष्कर्ष निकलता है? इन क्रियाओं से स्पष्ट है कि ऊष्मा का स्थानान्तरण एक वस्तु से दूसरी वस्तु में, एक स्थान से दूसरे स्थान तक तथा वस्तु के एक भाग से दूसरे भाग तक होता है।

ऊष्मा स्थानान्तरण की क्रिया को **ऊष्मा का संचरण** कहते हैं। ऊष्मा का संचरण किस कारण से होता है? आइए जानें।

#### क्रिया कलाप

- लोहे अथवा किसी धातु के दो समान आयताकार टुकड़े लें।
- इनमें से एक दुकड़े को कुछ देर तक गर्म करें। दूसरे दुकड़े को यथावत् रहने दें।
- अब दूसरे टुकड़े को पहले टुकड़े के ऊपर अथवा सटाकर रखें।
- कुछ देर बाद दोनों टुकड़ों का ताप ज्ञात करें।
   ताप में क्या अन्तर आता है? दूसरे टुकड़े का ताप बढ़ जाता है।

### इससे क्या निष्कर्ष निकलता है?

दो वस्तुओं के बीच ऊष्मा का संचरण तापान्तर के कारण होता है। ऊष्मा का संचरण अधिक ताप वाली वस्तु से कम ताप वाली वस्तु की ओर होता है।

ऊष्मा का संचरण निम्नलिखित तीन विधियों द्वारा होता है :-

1. चालन (कन्डक्शन) 2. संवहन (कन्वेक्शन) 3. विकिरण (रेडिएशन)

#### 1. ভালন :- (Conduction)

#### क्रिया कलाप

स्टील के चम्मच का एक सिरा भगोने के उबलते जल में रखें। चम्मच के दूसरे सिरे को हाथ से पकड़े रहें। क्या होता है?

चम्मच का दूसरा सिरा ऊष्मा मिलने के कारण धीरे-धीरे काफी गर्म हो जाता है। उबलते जल की ऊष्मा चम्मच के एक सिरे से दूसरे सिरे तक कैसे पहुँचती है?

आप जानते हैं कि प्रत्येक पदार्थ अणुओं से मिलकर बना होता है। चम्मच का जो सिरा उबलते जल में है उसका ताप बढ़ता है। तप्त अणु अपनी ऊष्मा अपने पड़ोसी अणु को देते हैं। पुनः ये अणु अपनी ऊष्मा का स्थानान्तरण अपने पड़ोसी अणुओं को करते हैं। इस प्रकार ऊष्मा अधिक ताप से कम ताप के सिरे तक पहुँच जाती है और कुछ समय बाद चम्मच का दूसरा सिरा भी गर्म हो जाता है। ऊष्मा संचरण की यह विधि चालन कहलाती है।



#### क्रिया कलाप

- लोहे की एक पटरी/स्केल लें।
- पटरी के ऊपर समान दूरी पर मोम की सहायता से चार ड्राइंग पिनें 1,2,3 तथा 4 चिपका दें।
- अब पटरी को चित्र अनुसार मेज पर रखकर इसके एक सिरे को ईंट से दबा दें।
- दूसरे सिरे को स्पिरिट लैम्प की सहायता से गर्म करें। क्या होता है?

गर्म करने पर पिनें एक-एक करके गिरने लगती हैं। कौन सी पिन सबसे पहले गिरती है? जिस सिरे को गर्म कर रहे हैं उसके पास वाली पिन नं० 4 सबसे पहले गिरती है। इसके बाद 3, 2 तथा 1 सं0 वाली पिनें क्रम से गिरती हैं।

गर्म सिरे से ठंडे सिरे तक ऊष्मा स्थानान्तरण के बारे में क्या



निष्कर्ष निकलता है? वास्तव में यहाँ ध्यान देने वाली बात है कि पदार्थ के अणु अपना स्थान नहीं छोड़ते बल्कि तप्त अणु अपनी ऊष्मा अपने पास वाले अणु को देते हैं। इसी प्रकार प्रत्येक अणु अपने पास वाले अणु को ऊष्मा देता है। इस प्रकार ऊष्मा एक सिरे से दूसरे सिरे की ओर स्थानान्तरित (संचारित) होती है। स्पष्ट है कि ठोस पदार्थों में ऊष्मा का संचरण चालन विधि द्वारा होता है। क्या सभी ठोस पदार्थों में इस प्रकार से ऊष्मा का संचरण होता है? आइये जाने।

### सुचालक तथा कुचालक (Good conductor and Bad conductor)

लोहे की छड़ के एक सिरे को गर्म करने पर दूसरा सिरा चालन विधि द्वारा गर्म हो जाता है। यदि सूखी लकड़ी के डंडे के एक सिरे को गर्म करें तो दूसरा सिरा छूने पर गर्म प्रतीत नहीं होता है। स्टील या लोहे में ऊष्मा सुगमता पूर्वक स्थानान्तरित होती है। परन्तु सूखी लकड़ी में नहीं। जिन पदार्थों से ऊष्मा का संचरण सुगमता पूर्वक होता है, उन्हें सुचालक कहते हैं। जैसे-लोहा, एल्यूमीनियम, ताँबा आदि।

जिन पदार्थों में ऊष्मा का संचरण सुगमता से नहीं होता, उन्हें **कुचालक** कहते हैं। जैसे- लकड़ी, काँच, कागज, ऊन, पोर्सिलीन, तथा वायु आदि।

# सुचालक तथा कुचालक पदार्थों का उपयोग

- 1. दैनिक जीवन में सुचालक तथा कुचालक पदार्थों का उपयोग सदैव होता रहता है, जैसे-ऊष्मा के अच्छे चालक होने के कारण पीतल तथा **एल्यूमीनियम** के बने बर्तनों का उपयोग खाना पकाने में किया जाता है।
- 2. ऊष्मा के कुचालक होने के कारण धातु के बने बर्तनों के हैण्डिल के ऊपर-लकड़ी, बाँस, बैकेलाइट आदि चढ़ा देते हैं ताकि हैण्डिल गर्म न हो तथा बर्तनों के गर्म होने पर इसे पकड़कर काम करने में आसानी हो।
- 3. बर्फ को पिघलने से बचाने के लिए इसके चारों ओर लकड़ी का बुरादा अथवा ऊनी कपड़ा लपेट देते हैं। इससे ऊष्मा का संचरण नहीं हो पाता हैं
  - 4. जाड़े के दिनों में ठंड से बचने के लिए ऊनी कपड़ों का प्रयोग करते हैं।

#### 2. संवहन (Convection) :

क्या द्रवों तथा गैसों में भी ऊष्मा का स्थानान्तरण चालन विधि से सम्भव है? नहीं। क्यों? ऊष्मा की कुचालक होने के कारण इन पदार्थों में चालन विधि द्वारा ऊष्मा का संचरण सम्भव नहीं है। इन पदार्थों में ऊष्मा का स्थानान्तरण किस प्रकार होता है?

#### किया कलाप

- काँच का एक फ्लास्क लें। इसके आधे भाग तक पानी भरें।
- पानी में सावधानी पूर्वक पोटैशियम परमैंग्नेट (लाल दवा) का एक कण फ्लास्क के बीच में डालें।
- फ्लास्क को स्पिरिट लैम्प से धीरे-धीरे गर्म करें।
- पानी में उठने वाली रंगीन धाराओं को ध्यान से देखें।
   क्या दिखाई देता है?

फ्लास्क की पेंदी से जल की लाल पतली धाराएँ नीचे से ऊपर की ओर उठती हुई दिखायी देती हैं तथा कुछ समय बाद चक्कर काटती



हुई ये पुनः वापस पेंदी पर आती हैं। ऐसा क्यों होता है?

फलास्क की तली के जल के अणु पहले गर्म होते हैं। ये अणु अपने पास के ठंडे जल के अणुओं की अपेक्षा हल्के होने के कारण पानी की ऊपरी सतह की ओर जाते हैं और ऊपरी सतह के जल के अणु नीचे की ओर आते हैं। ये अणु भी गर्म होकर फिर ऊपर उठते हैं। यह प्रक्रिया लगातार चलती रहती है और धीरे-धीरे जल गर्म हो जाता है। उक्त प्रक्रिया में ऊष्मा का स्थानान्तरण गर्म भाग से ठंडे भाग की ओर अणुओं की गति के कारण होता है। ऊष्मा स्थानान्तरण की इस प्रक्रिया को संवहन कहते हैं।

## संवहन धाराओं का दैनिक जीवन में उपयोग

#### चिमनियाँ :-

घरों तथा कारखानों से निकलने वाला धुआँ तथा गर्म गैसें संवहन धाराओं के कारण ऊपर उठकर चिमनी द्वारा बाहर निकल जाती हैं।

#### रोशनदान :-

श्वसन क्रिया में निकली वायु सामान्य वायु की तुलना में गर्म, नम तथा कम घनत्व वाली होती है। ये ऊपर उठकर छत के पास दीवार में बने ग्रेशनदान से बाहर निकल जाती है। कमरे तथा हाल से गर्म वायु निकालने के लिए छत के पास दीवार में बने बड़े गोलाकार छेद में एक्जास्ट पंखा लगते हैं। कमरे तथा हाल में ठंडी तथा स्वच्छ हवा खिड़की तथा दरवाजे से आती है।

### विकिरण विधि (Radiation)

यह ऊष्मा संचरण की तीसरी विधि है जिसमें ऊष्मा का स्थानान्तरण एक दूसरे से दूसरे स्थान तक होता है। स्थानान्तरण की इस विधि को विकिरण कहते हैं। इस विधि में ऊष्मा स्थानान्तरण के लिए दो वस्तुओं के बीच किसी माध्यम की आवश्यकता नहीं होती है। विकिरण की क्रिया निर्वात में भी हो सकती है।

इस विधि द्वारा किसी गर्म वस्तु से अपने चारों ओर ऊष्मा की किरणें उसी प्रकार फैलती हैं जिस प्रकार विद्युत बल्ब या जलती हुई मोमबत्ती से प्रकाश की किरणें फैलती हैं।

#### क्रिया कलाप

- एक मोमबत्ती जला कर खड़ी करें।
- एक थर्मामीटर को हाथ से पकड़ कर मोमबत्ती की लौ से थोड़ी दूर पर खें।
- कुछ देर बाद थर्मामीटर के पाठ्यांक को देखें।

क्या होता है?

क्या थर्मामीटर द्वारा प्रदर्शित तापवृद्धि ऊष्मा स्थानान्तरण की चालन तथा संवहन विधि के कारण हैं! नहीं। क्यों? 1. वायु ऊष्मा की कुचालक होने के कारण थर्मामीटर की घृण्डी तक ऊष्मा का स्थानान्तरण चालन विधि से नहीं हुआ।

2. मोमबत्ती की लौ के आस-पास की गर्म वायु हल्की होने के कारण ऊपर की ओर जाती है। अतः ऊष्मा का स्थानान्तरण संवहन विधि से भी नहीं हुआ।

स्पष्ट है कि थर्मामीटर की घुण्डी किसी अन्य विधि से गर्म हुई है। इस विधि को विकिरण कहते हैं।

सूर्य और पृथ्वी के बीच का बहुत बड़ा भाग निर्वात है। सूर्य की ऊष्मीय ऊर्जा निर्वात से होती हुई पृथ्वी तक पहुँचती है।

## कुछ और भी जानें

धातुओं की ऊष्मीय प्रसार क्षमता की विभिन्न का उपयोग स्वतः ताप नियंत्रक (थर्मोस्टेट) युक्ति हेतु द्विधातु पत्ती बनाने में किया जाता है। यह असमान प्रसार वाली दो धातुओं की पत्तियों को एक दूसरे के ऊपर रखकर चित्रानुसार बनायी जाती है।

इसमें ऊपर की पत्ती पीतल की तथा नीचे की पत्ती लोहे की होती है। पीतल का प्रसार लोहे की तुलना में अधिक होता है। द्विधातु पत्ती धारा के स्रोत से बिन्दु 'प' द्वारा जुड़ी रहती है। एक निश्चित ताप तक गर्म होने के कारण पत्तियाँ मुड़ जाती हैं। पीतल में अधिक प्रसार के कारण पीतल की पत्ती बाहर की ओर मुड़ जाती है और बिन्दु 'प' का सम्बन्ध धातु की पत्ती से टूट जाता है जिससे विद्युत धारा का प्रवाह रुक जाता है। पुनः ताप ताप कम होने पर पत्ती का सम्बन्ध बिन्दु 'प' से हो जाता है और विद्युत धारा बहने लगती है। इस प्रकार विद्युत पत्ती स्वतः



ताप नियंत्रक की भाँति कार्य करती है। इसका उपयोग विद्युत ओवन, विद्युत इस्त्री, रेफ्रीजरेटर, विद्युत भट्टी आदि में करते हैं।

# • वस्तुओं के उष्मीय गुणों का उपयोग

- (1) पदार्थ (ठोस, द्रव तथा गैस) गर्म करने पर फैलते हैं तथा ठंडा करने पर सिकुड़ते हैं। इस गुण का उपयोग थर्मामीटर बनाने में किया जाता है।
- (2) रेल की दो पटिरयों को जोड़ते समय दोनों पटिरयों के बीच कुछ स्थान छोड़ जाता है तािक गर्मी में जब पटिरयों में प्रसार हो तो पटिरयाँ टेड़ी न हो जायें।
- (3) बिजली के दो खम्भों के बीच बिजली का तार लगाते समय कुछ ढीला छोड़ा जाता है ताकि जाड़े में जब तार सिकुड़े तो खम्भा टेड़ा न हो जाये।
  - (4) मिश्रण के अवयवों को द्रवणांक तथा क्वथनांक के आधार पर पृथक करना :-

मिश्रण के अवयवों में जिनके क्वथनांकों में कम से कम 10°C ताप का अन्तर हो, गर्म करने पर कम क्वथनांक

वाला द्रव पहले वाष्प में बदल जाता है। इस वाष्प को ठंडा करने पर पुनः द्रव बन जाता है। अधिक क्वथनांक का द्रव बचा रहता है। इस प्रकार मिश्रण के अवयव पृथक हो जाते हैं, जैसे- बेंजीन (क्वथनांक  $80^{\circ}$ C) तथा नाइट्रोबेंजीन (क्वथनांक  $211^{\circ}$ C) का मिश्रण।

### (5) कुचालकता का उपयोग इन्सुलेशन हेतु करना :-

खाना पकाने के बर्तनों जैसे-हैण्डिल लगा तवा, कुकर, हैण्डिल लगा भगौना आदि के हैण्डिल के ऊपर लकड़ी अथवा बैकेलाइट का हत्था लगा देते हैं। ये ऊष्मा के कुचालक हैं। इनके उपयोग से बर्तन गर्म होने पर भी हैण्डिल गर्म नहीं होते। इस प्रकार गर्म बर्तनों को आग से उतारने में सुविधा होती है।

### विशेष :

किसी (थर्मामीटर) तापमापी बनाने के लिये गये द्रव की निम्न विशेषतायें होनी चाहिये।

- (1) द्रव की विशिष्ट ऊष्मा कम होनी चाहिये ताकि वह वस्तु से उष्मा लेकर बिना खुद उष्मा अवशोषित किये वस्तु का ताप दिखा सके।
- (2) द्रव का प्रसार समान होना चाहिये ताकि पैमाना बनाने में आसानी हो।
- (3) द्रव का प्रसार अधिक होगा चाहिये ताकि छोटा तापान्तर भी दिखाई दे।
- (4) द्रव का क्वथनांक अधिक और हिमांक कम होना चाहिये। ताकि ताप के अधिक तापान्तर के लिये उपयोग में लाया जा सके।
- (5) द्रव चमकदार और अपारदर्शी होना चाहिये ताकि पाठ आसानी से पढ़ा जा सके।
- (6) द्रव, काँच की नली में चिपकना नहीं चाहिये।
- (7) द्रव का वाष्प दाब बहुत कम होना चाहिये।
- (8) द्रव ताप का सुचालक होना चाहिये।
- (9) द्रव आसानी से शुद्ध रूप में उपलब्ध होना चाहिये।

# मूल्यांकन प्रश्न

#### वैकल्पिक प्रश्न

1. बर्फ का ताप होता है

(i) 100°C

(ii) 38°C

(iii)0°C

(iv) 10°C

2. द्रव के जल वाष्प में बदलने की क्रिया को कहते हैं।

(i) गलन

(ii) वाष्पन

|     | (iii)संघनन                                  | (iv) जमना                                           |
|-----|---------------------------------------------|-----------------------------------------------------|
| 3.  | 20°C के फॉरेन्हाइट में बदलिये               |                                                     |
|     | (i) 6°F                                     | (ii) 52°C                                           |
|     | (iii)36°C                                   | (iv) 68°C                                           |
| 4.  | किसी वस्तु का ताप निर्धारित होता है? अप     | गुओं की-                                            |
|     | (i) स्थितिज ऊर्जा द्वारा                    |                                                     |
|     | (ii) गतिज ऊर्जा द्वारा                      |                                                     |
|     | (iii)स्थितिज ऊर्जा और गतिज ऊर्जा के योग इ   | तरा                                                 |
|     | (iv)इनमें से कोई नहीं                       |                                                     |
| 5.  | थर्मामीटर बनाने में पारा उपयोग में लेते हैं | क्यों?                                              |
|     | (i) इसका क्वथनांक अधिक होता है              | (ii) यह चमकदार होता है                              |
|     | (iii)इसका वाष्प दाब कम होता है              | (iv) उपरोक्त सभी                                    |
| 6.  | सूर्य का ताप नापा जाता है-                  |                                                     |
|     | (i) पारे के तापमापी द्वारा                  | (ii) स्थिर आयतन गैस तापमापी द्वारा                  |
|     | (iii)प्रतिरोध तापमापी द्वारा                | (iv) उत्तापमापी द्वारा                              |
| 7.  | वस्तु A का द्रव्यमान B से अधिक है। दोनों व  | को समान मात्रा में ऊष्मा दी जाती है। किसका ताप अधिक |
|     | होगा।                                       |                                                     |
|     | (i) A का                                    | (ii) B का                                           |
|     | (iii)दोनों का समान                          | (iv) कुछ कह नहीं सकते                               |
| 8.  | 1 कैलोरी होता है-                           |                                                     |
|     | (i) 4.18 जूल                                | (ii) 4.18 × 10 <sup>2</sup> जूल                     |
|     | (iii)4.8 × 10³ जूल                          | (iv) 4.18 × 10⁵ जूल                                 |
| 9.  | 0°C के बर्फ को गर्म करने पर पानी का         | ताप होगा-                                           |
|     | (i) 10°C                                    | (ii) 100°C                                          |
|     | (iii)80°C                                   | (iv) 0°C                                            |
| 10. | घड़े में रख़ा पानी ठंडा हो जाता है क्यों?   |                                                     |
|     | (i) चालन द्वारा                             | (ii) वाष्पन द्वारा                                  |
|     |                                             |                                                     |

|         | (iii)संवहन द्वारा                                              | $(\mathrm{iv})$ विकीरण द्वारा         |
|---------|----------------------------------------------------------------|---------------------------------------|
| 11.     | ऊष्मा के सुचालक है-                                            |                                       |
|         | (i) लकड़ी                                                      | (ii) काँच                             |
|         | (iii)ताँबा                                                     | (iv) कागज                             |
| 12.     | द्रवों में ऊष्मा का संघटक होता है-                             |                                       |
|         | (i) चालन द्वारा                                                | (ii) संवहन द्वारा                     |
|         | (iii)विकिरण द्वारा                                             | (iv) वाष्पन द्वारा                    |
| 13.     | सूर्य से गर्मी पृथ्वी तक आती है-                               |                                       |
|         | (i) विकीरण द्वारा                                              | (ii) संवहन द्वारा                     |
|         | (iii) द्वारा                                                   | (iv) वाष्पन द्वारा                    |
| 14.     | कुकर में प्लास्टिक का हैंडल लगा होता है                        | क्योंकि                               |
|         | (i) देखने में अच्छा लगे                                        | (ii) खर्च कम होता है                  |
|         | (iii)हैंडल गर्म न हो                                           | (iv) कम्पनी का पता चले                |
| 15.     | किस ठोस को गर्म करने पर उसका आयत                               | न बढ़ता है-                           |
|         | (i) एल्युमिनियम                                                | (ii) नर्म लोहा                        |
|         | (iii)विष्मय                                                    | (iv) बर्फ                             |
| (B)     | लघु उत्तरीय प्रश्न                                             |                                       |
| 16.     | किसी वस्तु का ताप नापने का यंत्र कौन सा है                     | ?                                     |
| 17.     | स्वस्थ मनुष्य का ताप °C में बताइये।                            |                                       |
| 18.     | किसी तापमापी को बनाने के लिये द्रव की दो विशेषतायें बताइये।    |                                       |
| 19.     | $17^{\circ}\mathrm{C}$ को परमताप में परिवर्तित करिये।          |                                       |
| 20.     | प्लैटिनम प्रतिरोध तापमापी न्यूनतम किस ताप तव                   | क नाप सकता है।                        |
| 21.     | ऊष्मा की मात्रा किन किसी वस्तु के किन चीजों पर निर्भर करती है। |                                       |
| 22.     | 1 किलो कैलोरी की परिभाषा लिखिये।                               |                                       |
| 23.     | वर्ष की गुप्त ऊष्मा कितनी होती है।                             |                                       |
| दीर्घ उ | त्तरीय प्रश्न                                                  |                                       |
| 24.     | क्वथन और वाष्पन में दो अन्तर लिखिये।                           |                                       |
| 25.     | रेल की पटरियों को जोड़ते समय दो पटरियों वे                     | हे बीच स्थान क्यों छोड़ते हैं।<br>209 |

### प्रकाश

### • प्रकाश के विभिन्न स्त्रोत

प्रशिक्षु से चर्चा करें कि दिन के समय दिखने वाली वस्तुयें (पेड़, घर) आदि रात के समय दिखाई नहीं देती। अंधेरे कमरे में रखी मेज, कुर्सी आदि दिखाई नहीं देती लेकिन जैसे ही कमरे में बल्व, मोमबत्ती, टार्च आदि जलाया जाता है। सभी वस्तुयें दिखाई देने लगती है। अतः सूर्य, बल्व टार्च आदि से निकलने वाला प्रकाश जब किसी वस्तु पर पड़ती है तो वस्तु से परावर्तित होकर हमारी आँख पर पड़ती है जिससे वह वस्तु हमें दिखायी देती हैं इस प्रकार हम कह सकते हैं-

प्रकाश एक प्रकार की ऊर्जा है जो वस्तुओं को देखने में सहायक होती है।



प्रकाश के विभिन्न स्रोत

# दीप्त वस्तुयें-

जो वस्तुयें प्रकाश उत्पन्न करती हैं उन्हें प्रकाश स्त्रोत अथवा दीप्त वस्तुयें कहलाती हैं। यह प्रकाश स्त्रोत दो प्रकार के होते हैं सूर्य, तारे, जुगनू आदि प्राकृतिक प्रकाश स्त्रोत कहलाते हैं। लैम्प बल्व, टार्च, मोमबत्ती आदि मनुष्य द्वारा बनाये गये हैं इसलिये इन्हें कृत्रिम प्रकाश स्त्रोत कहलाते हैं।

# अदीप्त वस्तुयें-

मेज, कुर्सी, बॉक्स, बर्तन, दर्पण आदि वस्तुओं द्वारा प्रकाश का उत्सर्जन नहीं होता। इन्हें **अदीप्त वस्तुएँ** कहते हैं। चाँदनी रात में चन्द्रमा से प्रकाश मिलता है किन्तु चन्द्रमा दीप्त वस्तु नहीं है। क्योंकि यह सूर्य के प्रकाश से प्रकाशित होता है और परावर्तित होकर प्रकाश पृथ्वी तक पहुँचता है।

### प्रकाश का संचरण

क्रिया कलाप

- एक मोमबत्ती तथा एक ही आकार के दफ्ती के तीन
   टुकड़े लें। दफ्ती के तीनों टुकड़ों को एक दूसरे के ऊपर
   रख कर उनके बीच में एक छिद्र करें।
- मोमबत्ती को जलाकर मेज पर रखें।
- दफ्ती के तीनों टुकड़ों को चित्रानुसार गीली मिट्टी की सहायता से मेज पर सीधा खड़ा करके इस प्रकार रखें
   कि तीनों छिद्र एक सीधी रेखा में रहें।



- प्रथम दफ्ती के टुकड़े के छेद से निकल कर जाने वाली मोमबत्ती के प्रकाश को चित्रानुसार देखें। क्या होता है?
   मोमबत्ती का प्रकाश छिद्रों से आता हुआ दिखाई देता है।
- अब बीच वाले (दूसरे) टुकड़े को दाएं ओर थोड़ा सा खिसकाएँ। क्या होता है? प्रकाश का दिखाई देना बन्द हो जाता है। क्यों? क्योंकि इस स्थिति में सभी छिद्र एक सीधी रेखा में नहीं हैं और पहली दफ्ती के छिद्र से निकला प्रकाश दूसरी दफ्ती के पार नहीं जा पाता है। इस क्रिया कलाप से सिद्ध होता है कि प्रकाश सीधी रेखा में चलता है।

### प्रकाश किरणें



प्रकाश जिस मार्ग से चलता है, उसे प्रकाश का गमन पथ कहते हैं। प्रायः प्रकाश गमन पथ की कल्पना हम किसी अतिसूक्ष्म छिद्र से निकलने वाले प्रकाश से करते हैं। जिसे प्रकाश की किरण कहते हैं। सीधी रेखा पर तीर का निशान प्रकाश के चलने की दिशा को बतलाता है।

प्रकाश किरणों के समूह को **प्रकाश किरण पुंज** (Beam) कहते हैं। बहुत दूर से आती हुई प्रकाश किरणें एक दूसरे के समान्तर होती हैं, इस प्रकार के किरण पुंज को **समान्तर किरण पुंज** कहे हैं। किसी बिन्दु प्रकाश स्रोत से निकले वाली प्रकाश की किरणें उसके चारों ओर फैलती हुई जाती हैं। ऐसी किरणों को **अपसारी किरण पुंज** कहते हैं। जब प्रकाश किरणें किसी एक बिन्दु पर मिलती हैं। तो ऐसे किरण पुंज को **अभिसारी किरण पुंज** कहते हैं (चित्र 5.4)।

प्रकाश की चाल  $3 \times 10^8$  मीटर/सेकेण्ड होती है।

# प्रकाश का परावर्तन :

स्टेनलेस स्टील की थाली में देखने पर हमें अपना प्रतिबिम्ब दिखाई देता है। तालाब के किनारे स्थित पेड़ का प्रतिबिम्ब

जल में दिखाई देता है, क्यों? स्टेनलेस स्टील की थाली, तालाब का पानी प्रकाश की किरणों के मार्ग को परिवर्तित कर देते हैं। जिससे हम थाली में अपना प्रतिबिम्ब तथा पेड़ का जल में प्रतिबिम्ब देख पाते हैं। किसी चमकीले पृष्ठ से टकराने के पश्चात् प्रकाश में किरणों के मार्ग परिवर्तन की घटना परावर्तन कहलाती है।

हम सभी लोग दर्पण से भली-भाँति परिचित हैं। दर्पण को हम आस-पास की दुकानों तथा सड़क पर दौड़ते हुए मोटर, कार, स्कूटर आदि वाहनों में देखते हैं। हम अपने घरों में विद्यालय जाने के पूर्व अपने बालों को संवारने के लिए दर्पण का प्रयोग करते हैं। दर्पण के सामने जब हम अपना चेहरा लाते हैं तो हमें दर्पण में अपना चेहरा दिखाई देता है। क्यों?

#### क्रिया कलाप-

- एक ड्राइंग बोर्ड, समतल दर्पण, सफेद कागज तथा
   कुछ पेपर पिन लें।
- चित्र के अनुसार ड्राइंग बोर्ड पर पिनों की सहायता
   से सफेद कागज लगाएँ।
- कागज पर एक सरल रेखा MM खींचें।
- समतल दर्पण को कागज पर इस प्रकार रखें कि दर्पण रेखा पर खड़ा हो।
- दर्पण के सामने कागज पर एक अभिलम्ब ON खींचे।



- ullet अभिलम्ब से  $30^\circ$  का कोण बनाती हुई पिन A तथा B को इस प्रकार लगाएँ कि दोनों एक ही सीध में रहें।
- अब आँख को अभिलम्ब के दूसरी ओर ले जाकर दर्पण में पिनों को देखें। दर्पण में दिखाई देने वाली दोनों
   पिनों के सामने कागज पर दो पिनें C तथा D इस प्रकार लगाएँ कि चारों पिनें एक सीध में दिखें।

इस क्रिया कलाप को अलग-अलग नाप के कोणों से दोहरायें। दर्पण की ओर जाने वाली किरण आपितत किरण (AB) आपितत किरण दर्पण पर जिस बिन्दु पर मिलती है आपितन बिन्दु कहलाता है। ON आपितन बिन्दु पर अभिलम्ब है। आपितत किरण और अभिलम्ब के बीच का कोण आयतन कोण (i) तथा परावर्तित किरण और अभिलम्ब के बीच का कोण परावर्तन कोण (r) कहलाता है।

दर्पण से परावर्तित किरण कुछ नियमों का पालन करती है। जो इस प्रकार हैं।

- 1. आपतित किरण, परावर्तित किरण और आयतन बिन्द् पर अभिलम्ब एक ही तल में होते हैं।
- 2. आपतन कोण (i), परावर्तन कोण (r) के बराबर होता है।

प्रतिबिम्ब-जब प्रकाश की किरणें किसी वस्तु से चलती है और दर्पण से परावर्तित अथवा अपवर्तित होकर किसी

अन्य बिन्दु पर वास्तव में मिलती है या किसी बिन्दु से आती हुयी प्रतीत होती है वह बिन्दु उस वस्तु का प्रतिबिम्ब कहलाता है। प्रतिबिम्ब दो प्रकार के होते हैं। जब प्रकाश की किरणें दर्पण से परावर्तित अथवा अपवर्तित होकर वास्तव में किसी बिन्दु पर मिलती हैं तो वहाँ वास्तविक प्रतिबिम्ब बनता है और जब किसी बिन्दु से आती हुयी प्रतीत होती हैं तो वहाँ आभासी प्रतिबिम्ब बनता है।

## वास्तविक प्रतिबिम्ब और आभासी प्रतिबिम्ब में अन्तर

|    | वास्तविक प्रतिबिम्ब        | आभासी प्रतिबिम्ब           |
|----|----------------------------|----------------------------|
| 1. | प्रकाश की किरणें परावर्तित | प्रकाश की किरणें परावर्तित |
|    | अथवा अपवर्तित होकर         | अथवा अपवर्तित होकर         |
|    | किसी बिन्दु पर             | किसी बिन्दु से आती हुयी    |
|    | वास्तव में मिलती           | प्रतीत होती हैं।           |
|    | हैं।                       |                            |
| 2. | इस प्रतिबिम्ब को           | इस प्रतिबिम्ब के पर्दे पर  |
|    | पर्दे पर बनाया जा सकता     | नहीं बनाया जा सकता है।     |
|    | है।                        |                            |
| 3. | यह प्रतिबिम्ब हमेशा        | यह प्रतिबिम्ब हमेशा        |
|    | उल्टा बनता है।             | सीधा बनता है।              |

# समतल दर्पण द्वारा प्रतिबिम्ब का बनना

समतल दर्पण का उपयोग हम प्रतिदिन करते हैं। समतल दर्पण के सामने अपना चित्र सीधा दिखाई देता है। इस प्रकार बने प्रतिबिम्ब की कुछ विशेषतायें होती हैं।

चित्र में O एक वस्तु है जिससे OA और OB दो प्रकाश की किरणें चलती है। जो समतल दर्पण से परावर्तित होकर AO तथा BC दिया में जाती हैं। यह दोनों किरणें बिन्दु I से आती हुयी प्रतीत धातु में प्रसार का प्रयोग होती है। अतः बिन्दु I पर वस्तु O क आभासी और सीधा प्रतिबिम्ब बनता है।

# M A C

समतल दर्पण द्वारा प्रतिबिम्ब का बनना

#### विशेषतायें

(1) समतल दर्पण द्वारा बना प्रतिबिम्ब दर्पण के पीछे उतनी ही दूरी पर बनता है जितना वस्तु दर्पण के आगे रखी होती है। अतः  ${
m AI}={
m AO}$ 

- (2) प्रतिबिम्ब 180° घूमा हुआ होता है। जैसे यदि हमारा मुंह उत्तर की ओर है तो प्रतिबिम्ब का मुंह दक्षिण की ओर होगा।
  - (3) प्रतिबिम्ब का आकार वस्तु के आकार के बराबर होता है।

#### यह भी जानें :

- (1) Ambulence पर यह शब्द उल्टा लिखा होता है ताकि आगे वाली गाड़ी का ड्राइवर हमें सीधा पढ़े और उसे जल्दी पास दे दे।
  - (2) कुछ अक्षर जैसे A, H, M,V आदि का समतल दर्पण द्वारा बने प्रतिबिम्ब और अक्षर में कोई परिवर्तन नहीं होता।
- (3) किसी व्यक्ति को अपना पूरा प्रतिबिम्ब देखने के लिये अपनी लम्बाई के आधे लम्बाई के समतल दर्पण की आवश्यकता होती है।

# दो समतल दर्पण द्वारा प्रतिबिम्ब का बनना

यदि दो समतल दर्पण एक दूसरे से कुछ कोण बनाते हुये रखें हो और उसके बीच में एक वस्तु रखी जाये तो उस वस्तु के अनेक प्रतिबिम्ब बनते हैं। इन प्रतिबिम्बों की संख्या एक सूत्र द्वारा ज्ञात की जा सकती है। यदि दो समतल दर्पणों के बीच  $\theta^{\circ}$  का कोण हो तो प्रतिबिम्बों की संख्या



$$n = \frac{360}{Q} - 1$$

इस सूत्र से यदि  $Q=90^{\circ}$  तो

$$n = \frac{360}{Q} - 1 = 3$$

इसी प्रकार यदि Q=60° तो

$$n = \frac{360}{60} - 1 = 5$$

यदि दोनों दर्पण एक-दूसरे के समान्तर हो तो  $Q=0^\circ$  इस स्थिति में अनन्त प्रतिबिम्ब बनेंगे।



चित्र

# परावर्तक पेरिस्कोप

कार्डबोर्ड या लकड़ी का ट्यूब लेते हैं जो दो स्थान पर  $90^\circ$  के कोण पर मुडा हो। प्रत्येक मोड़ पर एक-एक

समतल दर्पण 45° के कोण पर लगा देते हैं।

जब वस्तु के समान्तर प्रकाश की किरणें पेरिस्कोप के पहले दर्पण पर 45° पर पड़ती है और उससे 45° पर परावर्तित होकर दूसरे दर्पण पर 45° पर पड़ती है और उससे दोबारा 45° पर परावर्तित होकर आँख पर पड़ती है। इस प्रकार दीवार के पीछे होकर भी व्यक्ति दीवार के पार देख सकता है। पेरिस्कोप का उपयोग सेना के जवान दुश्मन की स्थिति पता करने के लिये करते हैं। पेरिस्कोप को अन्दर और बाहर से काले रंग से रंग देते है तािक पेरिस्कोप की दीवार से परावर्तन न हो सके।

मॉडल के रूप में प्रशिक्षुओं से पेरिस्कोप बनवायें।

# गोलीय दर्पण द्वारा प्रतिबिम्ब का बनना-

समतल दर्पण के अतिरिक्त अन्य प्रकार के दर्पण भी होते हैं। आइये जाने :-

# गोलीय दर्पण

दैनिक जीवन में आप स्टेनलेस स्टील के चम्मच का प्रयोग करते हैं। क्या कभी आपने चम्मच के उत्तल पृष्ठ (उभरे भाग) के सामने अपना चेहरा देखा है? आप को प्रतिबिम्ब कैसा दिखायी पड़ता है? चम्मच के उत्तल पृष्ठ (उभरे भाग) के सामने मुँह करके देखने पर हमें अपना प्रतिबिम्ब छोटा, आभासी तथा सीधा दिखायी पड़ता है। जब हम चम्मच के अवतल पृष्ठ (गहरे भाग) से देखते हैं तो हमें अपना प्रतिबिम्ब बड़ा तथा सीधा दिखायी देता है। चम्मच को अपने से पर्याप्त दूरी पर रख कर देखने से प्रतिबिम्ब बड़ा या छोटा तथा वास्तविक दिखायी पड़ता है। अर्थात यहाँ चम्मच दर्पण की भाँति कार्य कर रहा है। इस प्रकार के दर्पण को गोलीय दर्पण कहते हैं। स्टेनलेस स्टील के चम्मच का उत्तल पृष्ठ, उत्तल दर्पण तथा अवतल पृष्ठ, अवतल दर्पण की भाँति व्यवहार कर रहा है।

# आइये जाने कि गोलीय दर्पण कैसे बनाये जाते हैं?

चित्र के अनुसार काँच के खोखले गोले की कल्पना कीजिए। जिसका केन्द्र C है।  $M_1M_2$  इसी गोले का कटा हुआ भाग है। इस भाग की बाहरी सतह पर चाँदी की कलई कर देने पर अन्दर की सतह चमकीली दिखाई देने लगती है। प्रकाश का परावर्तन इसी अन्दर वाली चमकदार सतह से होता है। यह गोलीय दर्पण **अवतल दर्पण** कहलाता है।

खोखले गोले के कटे हुए भाग  $\mathbf{M}_1\mathbf{M}_2$  की आन्तरिक सतह पर चाँदी की कलई करने पर गोलीय भाग का बाहरी



पैरिस्कोप

सतह चमकीली दिखाई देती है तथा प्रकाश का परावर्तन बाहरी सतह से होता है। इसे **उत्तल दर्पण** कहते हैं। आइये आपको गोलीय दर्पण से सम्बन्धित पारिभाषिक शब्दावलियों से परिचय करायें।

#### (A) वक्रता केन्द्र-

किसी गोलीय दर्पण का वक्रता केन्द्र उस गोले का केन्द्र होता है जिसके एक भाग से गोलीय दर्पण बनाना होता है। चित्र में C वक्रता केन्द्र है।

#### (B) वक्रता त्रिज्या-

गोलीय दर्पण जिस गोले का एक भाग है, उस गोले की त्रिज्या गोलीय दर्पण की वक्रता त्रिज्या कहलाती है। इसे 'R' से प्रदर्शित करते हैं। चित्र में CP वक्रता त्रिज्या है।

#### (C) ध्रुव-

गोलीय दर्पण का मध्य बिन्दु दर्पण का ध्रुव कहलाता है। चित्र में P ध्रुव है।

# (D) मुख्य अक्ष-

वक्रता केन्द्र तथा दर्पण के ध्रुव को मिलाने वाली रेखा, गोलीय दर्पण का मुख्य अक्ष कहलाती है। चित्र में PFC मुख्य अक्ष है।

# (E) फोकस बिन्दु-

मुख्य अक्ष के समान्तर आने वाली प्रकाश की किरणें दर्पण के परावर्तित होकर जिस बिन्दु पर मिलती हैं (अवतल दर्पण) या जिस बिन्दु से आती हुयी प्रतीत होती है (उत्तल दर्पण) वह बिन्दु दर्पण का फोकस बिन्दु कहलाता है।

# (F) फोकस दूरी-

फोकस बिन्दु और दर्पण के ध्रुव तक की दूरी को फोकस दूरी कहते हैं। इसे  $\mathbf{f}$  से प्रदर्शित करते हैं।

फोकस दूरी (f) = aक्रता त्रिज्या (R)/2



अवतल दर्पण

उत्तल दर्पण

गोलीय दर्पण द्वारा प्रतिबिम्ब प्राप्त करने के लिये निम्नलिखित किरणों में से किन्हीं दो किरणों को लेकर प्रतिबिम्ब बनाया जा सकता है।

वस्तु से चलने वाली प्रकाश किरणें,

गोलीय दर्पण से परावर्तित होकर अधोलिखित नियमों का पालन करती हैं।

- (i) मुख्य अक्ष के समान्तर चलने वाली प्रकाश की किरण परावर्तन के पश्चात् मुख्य फोकस F से होकर गुजरती है।
- (ii) मुख्य फोकस F से निकल कर दर्पण पर पड़ने वाली प्रकाश किरण परावर्तन के पश्चात् मुख्य अक्ष के समान्तर चलती है।
- (iii) वक्रता केन्द्र से होकर जाने वाली प्रकाश की किरण परावर्तन के पश्चात् उसी मार्ग में वापस लौट आती है।
- (iv) दर्पण के ध्रुव पर आपाती प्रकाश की किरण परावर्तन के पश्चात् आपाती कोण के बराबर परावर्तन कोण बनाती है।
- (v) वस्तु से चलने वाली प्रकाश किरणें परावर्तन के पश्चात् जिस बिन्दु पर एक दूसरे को काटती है या काटती हुई प्रतीत होती हैं, वस्तु का प्रतिबिम्ब उसी बिन्दु पर बनता है।



# अवतल दर्पण द्वारा प्रतिबिम्बों का बनना :

अवतल दर्पण के सामने वस्तु की विभिन्न स्थितियों के आधार पर अधोलिखित स्थितियों में प्रतिबिम्ब प्राप्त होते हैं (चित्र)।

- (i) जब वस्तु OA दर्पण के मुख्य फोकस F तथा ध्रुव P के मध्य रखी होती हैतो इससे चलने वाली प्रकाश की किरणें परावर्तन के पश्चात् चित्रानुसार फैल जाती हैं तथा दर्पण के पीछे मिलती हुई प्रतीत होती हैं। फलस्वरूप प्रतिबिम्ब BI दर्पण के पीछे बनता है। यह प्रतिबिम्ब सीधा, आभासी तथा वस्तु से बड़ा बनता है (चित्र (i))।
- (ii) जब वस्तु मुख्य फोकस F पर होती है, तो प्रकाश किरणें परवर्तन के पश्चात् चित्रानुसार समान्तर हो जाती हैं। जिनके अनन्त दूरी पर मिलने की कल्पना की जाती है। अतः प्रतिबिम्ब अनन्त पर बनता है (चित्र (ii))।
- (iii) जब वस्तु OA मुख्य फोकस F तथा वक्रता केन्द्र C के

मध्य होती है। प्रतिबिम्ब BI अनन्त तथा वक्रता केन्द्र के मध्य बनता है। प्रतिबिम्ब उल्टा, वास्तविक तथा वस्तु से बड़ा होता है (चित्र (iii)।

- (iv) जब वस्तु OA वक्रता केन्द्र C पर स्थित होती है तो इसका प्रतिबिम्ब OB चित्रानुसार वक्रता केन्द्र पर ही बनता है। यह प्रतिबिम्ब उल्टा, वास्तविक तथा वस्तु के आकार के बराबर होता है (चित्र (iv)।
- (v) जब वस्तु OA वक्रता केन्द्र C तथा अनन्त दूरी के मध्य होती है तो इसका उल्टा, वास्तविक तथा वस्तु से छोटा प्रतिबिम्ब BI वक्रता केन्द्र और मुख्य फोकस के मध्य प्राप्त होता है (चित्र (v))।
- (vi) जब वस्तु अनन्त दूरी पर होती है तो आपाती प्रकाश किरणें दर्पण से परावर्तित होकर समान्तर हो जाती हैं। इस स्थिति में प्रतिबिम्ब BI फोकस पर बनता है। यह प्रतिबिम्ब उल्टा, वास्तविक तथा वस्तु से छोटा होता है (चित्र (vi))

#### क्या आप जानते हैं?

- अवतल दर्पण में जब वस्तु दर्पण के मुख्य फोकस तथा ध्रुव के मध्य दर्पण के निकट होती है तो प्रतिबिम्ब दर्पण के दूसरी तरफ सीधा बनता है। यह आभासी होता है। सीधे बनने वाले सभी प्रतिबिम्ब आभासी होते हैं।
- उपरोक्त स्थिति के अलावा अन्य सभी स्थितियों में प्रतिबिम्ब उल्टा बनता है। उल्टे प्रतिबिम्ब वास्तविक होते हैं।
- जैसे-जैसे वस्तु दर्पण से दूर हटती है, प्रतिबिम्ब का आकार उसी क्रम में छोटा होता जाताहै।

# (ii) (iii) T (iv) 0 (v)

अवतल दर्पण द्वारा प्रतिबिम्ब का बनना

# उत्तल दर्पण द्वारा प्रतिबिम्ब का बनना :-

उत्तल दर्पण के सामने वस्तु चाहे जहाँ पर स्थित हो उसका प्रतिबिम्ब सदैव दर्पण के पीछे ध्रुव तथा मुख्य फोकस के मध्य बनता है। प्रतिबिम्ब सीधा, आभासी तथा वस्तु से छोटा बनता है।



चित्र : उत्तल दर्पण द्वारा प्रतिबिम्ब का बनना

मोटर साइकिल, कार, बस आदि में लगा दर्पण उत्तल दर्पण होता है। जिसमें चालक पीछे से आने वाले वाहन का सीधा प्रतिबिम्ब देख सकता है।

# पारदर्शी, अल्पपारदर्शी तथा अपारदर्शी, वस्तुयें

#### क्रिया कलाप

- एक मोमबत्ती, काँच की साफ प्लेट, धातु (लोहा) की
   प्लेट, घिसे हुए काँच की प्लेट, ट्रेसिंग पेपर तथा दफ्ती
   का टुकड़ा लें।
- मोमबत्ती को मेज पर रख कर जलाएं।
- जलती हुई मोमबत्ती के सामने सभी प्लेटों को बारी-बारी से रख कर मोमबत्ती की लौ को देखें (चित्र 5.2)।



क्या सभी प्लेटों के बीच से मोमबत्ती की लौ समान रूप से दिखाई देती है?

काँच की साफ प्लेट के बीच से प्रकाश की लौ साफ दिखाई देती है। ट्रेसिंग पेपर तथा घिसे हुए काँच की प्लेट से मोमबत्ती की लौ धुंधली दिखाई देती है जबकि दफ्ती और धातु की प्लेट से प्रकाश की लौ दिखाई नहीं देती है।

वास्तव में प्रकाश काँच की प्लेट को पार करके दूसरी ओर निकल जाता है। काँच को **पारदर्शी वस्तु** कहते हैं। ट्रेसिंग पेपर एवं घिसे हुए काँच पर जब प्रकाश पड़ता है, तो उसका कुछ ही भाग इसे पार करके बाहर निकलता है। जिससे लौ धुंधली दिखाई देती है। इस प्रकार के पदार्थ अल्प पारदर्शी कहलाते हैं। धातु की प्लेट तथा दफ्ती पर पड़ने वाला प्रकाश इसे पार करके बाहर नहीं आ पाता है। फलस्वरूप प्रकाश की लौ दिखाई नहीं देती है। इस प्रकार के पदार्थ को अपारदर्शी कहते हैं।

- पारदर्शी पदार्थीं से प्रकाश आर-पार निकल जाता है।
- अल्प पारदर्शी पदार्थों से प्रकाश कम मात्रा में निकलता है।

220

अपारदर्शी पदार्थों से प्रकाश बिल्कुल नहीं निकल पाता है।
 प्रशिक्षुओं से निम्न क्रिया कलाप करायें और भिन्न-भिन्न प्रकार की वस्तुओं की लम्बाई ज्ञात करें।
 चित्र के अनुसार किसी वृक्ष की छाया की लम्बाई माप कर उसकी ऊँचाई ज्ञात करें।

DE = वृक्ष की ऊँचाई

EF = वृक्ष के छाया की लम्बाई

AB = किसी छड़ी की लम्बाई

BC = छड़ी की छाया की लम्बाई

$$\frac{DE}{AB} = \frac{EF}{BC}$$

अतः वृक्ष की ऊँचाई  $DE = \frac{EF \times AB}{BC}$ 

वृक्ष की छाया की लम्बाई  $\mathrm{EF} = \frac{\mathrm{DE} imes \mathrm{BC}}{\mathrm{AB}}$ 



किसी वस्तु की लम्बाई ज्ञात करना

# गोलीय दर्पणों द्वारा परावर्तन के लिए चिह्न परिपाटी

गोलीय दर्पणों द्वारा प्रकाश के परावर्तन पर विचार करते समय हम एक निश्चित चिह्न परिपाटी का पालन करेंगे, जिसे **नयी कार्तीय चिह्न परिपाटी** कहते हैं। इस परिपाटी में दर्पण के ध्रुव (P) को मूल बिंदु मानते हैं। दर्पण के मुख्य अक्ष को निर्देशांक पद्धित का x-अक्ष (XX') लिया जाता है। यह परिपाटी निम्न प्रकार है :

- (i) वस्तु सदैव दर्पण के बाईं ओर रखा जाता है। इसका अर्थ है कि दर्पण पर बिंब से प्रकाश बाईं ओर से आपतित होता है।
- (ii) मुख्य अक्ष के समांतर सभी दूरियाँ दर्पण के ध्रुव से मापी जाती हैं।
- (iii) मूल बिंदु के दाईं ओर (+ x-अक्ष के अनुदिश) मापी गई सभी दुरियाँ धनात्मक मानी जाती हैं जबिक मूल बिंदु के बाई ओर (-x-अक्ष के अनुदिश) मापी गई दूरियाँ ऋणात्मक मानी जाती हैं।
- (iv) मुख्य अक्ष के लंबवत तथा ऊपर की ओर (+ y-अक्ष के अनुदिश) मापी जाने वाली दूरियाँ धनात्मक मानी जाती हैं।



(v) मुख्य अक्ष के लंबवत तथा नीचे की ओर (-v)-अक्ष के अनुदिश) मापी जाने वाली दूरियाँ ऋणात्मक मानी जाती

हैं।

ऊपर वर्णित नयी कार्तीय चिह्न परिपाटी आपके संदर्भ के लिए चित्र में दर्शायी गई है। यह चिह्न परिपाटी दर्पण का सूत्र प्राप्त करने तथा संबंधित आंकिक प्रश्नों को हल करने के लिए प्रयुक्त की गई है।

# दर्पण सूत्र तथा आवर्धन

गोलीय दर्पण में इसके ध्रुव से बिंब की दूरी, बिंब दूरी (u) कहलाती है। दर्पण के ध्रुव से प्रतिबिंब की दूरी, प्रतिबिंब दूरी (v) कहलाती है। आपको पहले ही ज्ञात है कि ध्रुव से मुख्य फोकस की दूरी, फोकस दूरी (f) कहलाती है। इन तीनों राशियों के बीच एक संबंध है जिसे दर्पण सूत्र द्वारा प्रस्तुत किया जाता है।

इस सूत्र को निम्न प्रकार व्यक्त करते हैं :

$$\frac{1}{\upsilon} + \frac{1}{u} = \frac{1}{f}$$

यह संबंध सभी प्रकार के गोलीय दर्पणों के लिए तथा बिंब की सभी स्थितियों के लिए मान्य हैं। प्रश्नों को हल करते समय, जब आप दर्पण सूत्र में  $u,\,v,\,f$  तथा R के मान प्रतिस्थापित करें तो आपको नयी कार्तीय चिह्न परिपाटी का प्रयोग करना चाहिए।

#### आवर्धन

गोलीय दर्पण द्वारा उत्पन्न आवर्धन वह आपेक्षिक विस्तार है जिससे ज्ञात होता है कि कोई प्रतिबिंब बिंब की अपेक्षा कितना गुना आवर्धित है। इसे प्रतिबिंब की ऊँचाई तथा बिंब की ऊँचाई के अनुपात रूप में व्यक्त किया जाता है। यदि h बिंब की ऊँचाई हो तथा h' प्रतिबिंब की ऊँचाई हो तो गोलीय दर्पण द्वारा उत्पन्न आवर्धन (m) प्राप्त होगा। m प्रतिबिंब की ऊँचाई (h)/वस्तु की ऊँचाई (h)

$$\mathbf{m} = \frac{\mathbf{h'}}{\mathbf{h}}$$

आवर्धन m बिंब की दूरी (u) तथा प्रतिबिंब दूरी (v) से भी संबंधित है। इसे व्यक्त किया जाता है।

आवर्धन (m) = 
$$\frac{h'}{h}$$
 =  $-\frac{v}{u}$ 

# प्रकाश का अपवर्तन

क्या आपने किसी काँच के बर्तन में रखे पानी में किसी पेंसिल को आंशिक रूप से डूबे देखा है? यह वायु तथा पानी के अंतरपृष्ठ पर (अर्थात् पानी की ऊपरी सतह पर) टेढ़ी प्रतीत होती है। आपने देखा होगा कि पानी से भरे किसी काँच के बर्तन में रखे नींबू, पार्श्व (side) से देखने पर अपने वास्तविक साइज से बड़े प्रतीत होते हैं। इन अनुभवों की व्याख्या आप किस प्रकार करेंगे?

आइए पानी में आंशिक रूप से डूबी पेंसिल के मुड़े होने की घटना पर विचार करें। पेंसिल के पानी में डूबे भाग से आपके पास पहुँचने वाला प्रकाश, पेंसिल के पानी से बाहर के भाग की तुलना में भिन्न दिशा से आता हुआ प्रतीत होता है। इसी कारण पेंसिल मुड़ी हुई प्रतीत होती है। इन्हीं कारणों से, जब अक्षरों के ऊपर काँच का स्लैब रख कर देखते हैं तो वे उठे हुए प्रतीत होते हैं।

यदि पानी के स्थान पर हम कोई अन्य द्रव जैसे किरोसिन या तारपीन का तेल प्रयोग करें, क्या तब भी पेंसिल उतनी ही मुड़ी हुई दिखेगी? यदि हम काँच के स्लैब को पारदर्शी प्लास्टिक के स्लैब से प्रतिस्थापित कर दें, क्या तब भी अक्षर उसी ऊँचाई तक उठे प्रतीत होंगे? आप देखेंगे कि अलग-अलग माध्यमों के युग्मों के लिए इन प्रभावों का विस्तार अलग-अलग है। ये प्रेक्षण सूचित करते हैं कि प्रकाश सभी माध्यमों में एक ही दिशा में गमन नहीं करता। ऐसा प्रतीत होता है कि जब प्रकाश एक माध्यम से दूसरे माध्यम में तिरछा होकर जाता है तो दूसरे माध्यम में इसके संचरण की दिशा परिवर्तित हो जाती है। इस परिघटना को विस्तार से कुछ क्रियाकलाप करके समझें।

#### क्रियाकलाप

मेज पर रखे एक सफेद कागज की शीट पर एक मोटी सीधी रेखा खींचिए।

इस रेखा के ऊपर एक काँच का स्लैब इस प्रकार रिखए कि इसकी एक कोर इस रेखा से कोई कोण बनाए। स्लैब के नीचे आए रेखा के भाग को पार्श्व (side) से देखिए। आप क्या देखते हैं?

क्या काँच के स्लैब के नीचे की रेखा कोरों (edges) के पास मुड़ी हुई प्रतीत होती है?

अब काँच के स्लैब को इस प्रकार रखिए कि यह रेखा के अभिलंबवत हो। अब आप क्या देखते हैं? क्या काँच के स्लैब के नीचे रेखा का भाग मड़ा हुआ प्रतीत होता है?

रेखा को काँच के स्लैब के ऊपर से देखिए। क्या स्लैब के नीचे रेखा का भाग उठा हुआ प्रतीत होता है? ऐसा क्यों होता है?

# काँच के आयताकार स्लैब से अपवर्तन

काँच के स्लैब से प्रकाश के अपवर्तन की परिघटना को समझने के लिए, आइए एक क्रियाकलाप करें।

#### क्रियाकलाप

एक ड्राइंग बोर्ड पर सफेद कागज की एक शीट, ड्राइंग पिनों की सहायता से लगाइए।

शीट के ऊपर बीच में काँच का एक आयताकार स्लैब रखिए।

पेंसिल से स्लैब की रूपरेखा खींचिए। इस रूपरेखा का नाम ABCD रखते हैं।

चार एकसमान ऑलपिन लीजिए।

दो पिनें, मान लीजिए E तथा F ऊर्ध्वाधरतः इस प्रकार लगाइए कि पिनों को मिलाने वाली रेखा कोर AB से कोई कोण बनाती हुई हो।

पिन E तथा F के प्रतिबिंबों को विपरीत फलक से दिखए। दूसरी दो पिनों, माना G तथा H, को इस प्रकार लगाइए कि ये पिनें एवं E तथा F के प्रतिबिंब एक सीधी रेखा पर स्थित हों।

पिनों तथा स्लैब को हटाइए।

पिनों E तथा F की नोकों (tip) की स्थितियों को मिलाइए तथा इस रेखा को AB तक बढ़ाइए। मान लीजिए EF, AB से बिंदु O पर मिलती है। इसी प्रकार पिनों G तथा H की नोकों की स्थितियों को मिलाइए तथा इस रेखा को कोर CD तक बढ़ाइए। मान लीजिए HG, CD से O' पर मिलती है।

O तथा O' को मिलाइए। EF को भी P तक बढ़ाइए, जैसा कि चित्र में बिंदुकित रेखा द्वारा दर्शाया गया है।

इस क्रियाकलाप में आप नोट करेंगे कि प्रकाश किरण ने अपनी दिशा बिंदुओं O तथा O' पर परिवर्तित की है। नोट कीजिए कि दोनों बिंदु O तथा O' दोनों पारदर्शी माध्यमों को पृथक् करने वाले पृष्ठों पर स्थित हैं। AB के बिंदु O पर एक अभिलंब NN' खींचिए तथा दूसरा अभिलंब MM', CD के बिंदु O' पर खींचिए। बिंदु O पर प्रकाश किरण विरल माध्यम से सघन माध्यम में अर्थात वायु से काँच में प्रवेश कर रही है। नोट कीजिए कि प्रकाश किरण अभिलंब की ओर झुक जाती है। O' पर, प्रकाश किरण



ने काँच से वायु में अर्थात् सघन माध्यम से विरल माध्यम में प्रवेश किया है। प्रकाश किरण अभिलंब से दूर मुड़ जाती है। दोनों अपवर्तक सतहों AB तथा CD पर आपतन कोण तथा अपवर्तन कोण के मानों की तुलना कीजिए।

चित्र में EO आपतित किरण है, OO' अपवर्तित किरण है तथा O'H निर्गत किरण है। आप देख सकते हैं कि निर्गत किरण, आपतित किरण की दिशा में समांतर है। ऐसा क्यों होता है? आयताकार काँच के स्लैब के विपरीत फलकों AB (वायु-काँच अंतरापृष्ठ) तथा CD (काँच-वायु अतंरापृष्ठ) पर प्रकाश किरण के मुड़ने का परिमाण समान तथा विपरीत है। इसी कारण से निर्गत किरण, आपतित किरण के समांतर निकलती है। तथापि, प्रकाश किरण में थोड़ा सा पार्श्वक विस्थापन होता है। यदि प्रकाश किरण दो माध्यमों के अंतरापृष्ठ पर अभिलंबवत आपतित हो तब क्या होगा? स्वयं करके ज्ञात कीजिए।

अब आप प्रकाश के अपवर्तन से परिचित हैं। अपवर्तन प्रकाश के एक पारदर्शी माध्यम से दूसरे में प्रवेश करने पर प्रकाश की चाल में परिवर्तन के कारण होता है। प्रयोग दर्शाते हैं कि प्रकाश का अपवर्तन निश्चित नियमों के आधार पर होता है।

अपवर्तन के नियम निम्नलिखित हैं :

- (i) आपतित किरण, अपवर्तित किरण तथा दोनों माध्यमों को पृथक् करने वाले पृष्ठ के आपतन बिंदु पर अभिलंब सभी एक ही तल में होते हैं।
- (ii) प्रकाश के किसी निश्चित रंग तथा निश्चित माध्यमों के युग्म के लिए आपतन कोण की ज्या (sine) तथा अपवर्तन कोण की ज्या (sine) का अनुपात स्थिर होता है। इस नियम को स्नेल का अपवर्तन का नियम भी कहते हैं। यदि i आपतन कोण हो तथा r अपवर्तन कोण हो तब

$$\frac{\sin i}{\sin r}$$
 = स्थिरांक

इस स्थिरांक के मान को दूसरे माध्यम का पहले माध्यम के सापेक्ष अपवर्तनांक (refractive index) कहते हैं। आइए, अपवर्तनांक के बारे में कुछ विस्तार से अध्ययन करें।

#### अपवर्तनांक

आप पहले ही अध्ययन कर चुके हैं कि जब प्रकाश की किरण तिरछी गमन करती हुई एक पारदर्शी माध्यम से दूसरे में प्रवेश करती है तो यह दूसरे माध्यम में अपनी दिशा परिवर्तित कर लेती है। किन्हीं दिए हुए माध्यमों के युग्म के लिए होने वाले दिशा परिवर्तन के विस्तार को अपवर्तनांक के रूप में व्यक्त किया जाता है।

अपवर्तनांक को एक महत्वपूर्ण भौतिक राशि विभिन्न माध्यमों में प्रकाश के संचरण की आपेक्षिक चाल, से संबद्ध किया जा सकता है। यह देखा गया है कि विभिन्न माध्यमों में प्रकाश अलग-अलग चालों से संचारित होता है। निर्वात में प्रकाश  $3 \times 10^8 \, \mathrm{m/s}$  की चाल से चलता है जो कि प्रकाश की किसी भी माध्यम में हो सकने वाली द्रुततम चाल है। वायु में प्रकाश की चाल निर्वात की अपेक्षा थोड़ी ही कम होती है। काँच या पानी में यह यथेष्ट रूप से घट जाती है। दो माध्यमों के युग्म के लिए अपवर्तनांक का मान दोनों माध्यमों में प्रकाश की चाल पर निर्भर है, जैसा कि नीचे दिया गया है।

चित्र में दर्शाए अनुसार एक प्रकाश की किरण पर विचार करें जो माध्यम 1 से माध्यम 2 में प्रवेश कर रही है। मान लीजिए, प्रकाश की चाल माध्यम 1 में  $\mathbf{v}_1$  तथा माध्यम 2 में  $\mathbf{v}_2$  है। माध्यम 2 का माध्यम 1 के सापेक्ष अपवर्तनांक, माध्यम 1 में प्रकाश की चाल तथा माध्यम 2 में प्रकाश की चाल के अनुपात द्वारा व्यक्त करते हैं। इसे प्रायः संकेत  $\mathbf{n}_{21}$  से निरूपित करते हैं। इसे समीकरण के रूप में निम्न प्रकार व्यक्त करते हैं-

$${f n}_{21} = {{
m Higu}_{1} \ {
m 1}} {{
m Higu}_{2} \ {
m 1}} {{
m 2}} {{
m 3}} {{
m 4}} {{
m 3}} {{
m 5}} {{
m 5}} {{
m 5}} {{
m 7}} {{
m 5}} {{
m 6}} {{
m 7}} {{
m 7}} {{
m 6}} {{
m 7}} {{
m 7}}$$

इसी तर्क से, माध्यम 1 का माध्यम 2 के सापेक्ष अपवर्तनांक  $\mathbf{n}_{12}$  से निरूपित करते हैं। इसे व्यक्त किया जाता है-

$${\bf n}_{12} = \frac{{}_{11}{}_{22}}{{}_{11}{}_{22}} = \frac{{}_{11}{}_{22}}{{}_{21}} = \frac{{}_{11}{}_{22}}{{}_{21}} = \frac{{}_{12}}{{}_{21}}$$



यदि माध्यम 1 निर्वात या वायु है, तब माध्यम 2 का अपवर्तनांक निर्वात के सापेक्ष माना जाता है। यह माध्यम का निरपेक्ष अपवर्तनांक कहलाता है। यह केवल  $\mathbf{n}_2$  से निरूपित किया जाता है। यदि वायु में प्रकाश की चाल  $\mathbf{c}$  है तथा माध्यम में प्रकाश की चाल  $\mathbf{v}$  है तब माध्यम का अपवर्तनांक  $\mathbf{n}_{\mathrm{m}}$  होगा।

 $n_{_{m}}=$  वायु में प्रकाश की चाल/माध्यम में प्रकाश की चाल  $= \frac{c}{\upsilon}$ 

माध्यम का निरपेक्ष अपवर्तनांक केवल अपवर्तनांक कहलाता है। सारणी 10.3 में अनेक माध्यमों के अपवर्तनांक दिए गए हैं। सारणी से आपको ज्ञात होगा कि जल का अपवर्तनांक,  $n_{_{
m w}}=1.33$  है। इसका अर्थ है कि वायु में प्रकाश का वेग तथा जल में प्रकाश की चाल का अनुपात 1.33 है।

इसी प्रकार क्राउन काच का अपवर्तनांक  $\mathbf{n}_{\mathrm{g}}=1.52$  होता है। ऐसे आँकड़े अनेक स्थानों पर उपयोगी हैं। तथापि आपको इन आँकड़ों को कंठस्थ करने की आवश्यकता नहीं है।

सारणी : कुछ द्रव्यात्मक माध्यमों के निरपेक्ष अपवर्तनांक

| <br>द्रव्यात्मक  | अपवर्तनांक | द्रव्यात्मक माध्यम | अपवर्तनांक |  |
|------------------|------------|--------------------|------------|--|
| माध्यम           |            |                    |            |  |
| वायु             | 1.0003     | कनाडा बालसम        | 1.53       |  |
| बर्फ             | 1.31       | खनिज नमक           | 1.54       |  |
| जल               | 1.33       | कार्बन डाइसल्फाइड  | 1.63       |  |
| ऐल्कोहॉल         | 1.36       | सघन फ्लिंट काँच    | 1.65       |  |
| किरोसिन          | 1.44       | रूबी (मणिक्य)      | 1.71       |  |
| संगलित क्वार्ट्ज | 1.46       | नीलम               | 1.77       |  |
| तारपीन का तेल    | 1.47       | हीरा               | 2.42       |  |
| बेंजीन           | 1.50       |                    |            |  |
| क्राउन काँच      | 1.52       |                    |            |  |

सारणी से नोट कीजिए कि यह आवश्यक नहीं है कि प्रकाशित सघन माध्यम का द्रव्यमान घनत्व भी अधिक हो। उदाहरण के लिए, किरोसिन जिसका अपवर्तनांक जल से अधिक है, जल की अपेक्षा प्रकाशित सघन है, यद्यपि इसका द्रव्यमान घनत्व जल से कम है।

# यह भी जानें

अपवर्तन की क्रिया में प्रकाश की चाल, तरंगदैर्ध्य तथा तीव्रता बदल जाती है। जबकि प्रकाश की आवृत्ति वही रहती है।

# क्रान्तिक कोण तथा पूर्ण आन्तरिक परावर्तन (Critical Angle and Total Internal reflection)

जब कोई प्रकाश की किरण किसी सघन माध्यम से विरल माध्यम में जाती है तो वह दोनों माध्यम के पृष्ठ पर अभिलम्ब से दूर मुड़ जाती है। अर्थात् अपवर्तन कोण, आपतन कोण से बड़ा होता है। यदि आपतन कोण का मान धीरे-धीरे बढ़ाते जायें तो अपवर्तन कोण भी बढ़ता जाता है तथा एक विशेष आपतन कोण के लिए अपवर्तन कोण का मान 90° हो जाताहै। इस आपतन कोण को उस पृष्ठ के लिये क्रांतिक कोण कहते हैं। अतः क्रान्तिक कोण सघन माध्यम में वह आपतन कोण है जिसके लिये विरल मध्यम में अपवर्तन कोण 90° होता है। इसका मान दोनों माध्यमों की प्रकृति तथा प्रकाश के रंग पर निर्भर करता है। काँच तथा वायु के लिये क्रान्तिक कोण लगभग 42° है।



पूर्ण आन्तरिक परावर्तन

जब सघन माध्यम में आपतन कोण का मान क्रान्तिक कोण से बढ़ाया जाता है तो सम्पूर्ण आपितत प्रकाश परावर्तन के नियमों के अनुसार परावर्तित होकर सघन माध्यम में ही वापस लौट आता है। इस घटना को प्रकाश का पूर्ण आन्तरिक परावर्तन कहते हैं।

# पूर्ण आन्तरिक परावर्तन की शर्ते :

- (1) प्रकाश सघन माध्यम से विरल माध्यम में जाना चाहिये
- (2) आपतन कोण का मान क्रान्तिक कोण से अधिक होना चाहिये।

#### विशोष-

पूर्ण आन्तरिक परावर्तन में ऊर्जा का कोई हानि नहीं होती है।

# गोलीय लेंसों द्वारा अपवर्तन

आपने कुछ मनुष्यों को पढ़ने के लिए चश्मे प्रयोग करते हुए देखा होगा। घड़ीसाज बहुत छोटे पुरजों को देखने के लिए छोटे आवर्धक लेंस का उपयोग करते हैं। क्या कभी आपने आवर्धक लेंस के पृष्ठ को अपने हाथों से छूकर देखा है? क्या इसका पृष्ठ समतल है या विक्रत है? क्या यह बीच से मोटा है या किनारों से? चश्मों में हम लेंसों का ही उपयोग करते हैं। घड़ीसाज के आवर्धक में भी लेंस लगा होता है। लेंस क्या है? यह प्रकाश किरणों को किस प्रकार मोड़ता है? इस अनुच्छेद में हम इसी विषय में अध्ययन करेंगे।

दो पृष्ठों से घिरा हुआ कोई पारदर्शी माध्यम, जिसका एक या दोनों पृष्ठ गोलीय हैं, लेंस कहलाता है। इसका अर्थ यह है कि लेंस का कम से कम एक पृष्ठ गोलीय होता है। ऐसे लेंसों में दूसरा पृष्ठ समतल हो सकता है। किसी लेंस में बाहर की ओर उभरे दो गोलीय पृष्ठ हो सकते हैं। ऐसे लेंस को द्वि-उत्तल लेंस कहते हैं। इसे केवल उत्तल लेंस भी कहते हैं। यह किनारों की अपेक्षा बीच से मोटा होता है। उत्तल लेंस प्रकाश किरणों को चित्र (a) में दर्शाए अनुसार अभिसरित करता है। इसीलिए उत्तल लेंसों को अभिसारी लेंस भी



लैंस, तल. प्रकाश का अपवर्तन

दो गोलीय पृष्ठों से घिरा होता है। यह बीच की अपेक्षा किनारों से मोटा होता है। ऐसे लेंस प्रकाश किरणों को चित्र (b) में दर्शाए अनुसार अपसरित करते हैं। ऐसे लेसों को अपसारी लेंस कहते हैं। द्वि-अवतल लेंस प्रायः अवतल लेंस भी कहलाता है।

लैंस उत्तल हो या अवतल प्रत्येक में दो गोलीय तल होते हैं। यह गोलीय तल एक खोखले गोले के भाग होते हैं।



(A) **वक्रता केन्द्र** : लैंस जिन दो गोलों के भाग होते हैं उनके केन्द्र लैंस के वक्रता केन्द्र कहलाते हैं।  $C_1$  और  $C_2$  लैंस के वक्रता केन्द्र हैं।

- (B) वक्रता त्रिज्या : लैंस जिन दो गोलों के भाग होते हैं उनकी त्रिज्या लैंस की वक्रता त्रिज्या कहलाती है।
- (C) **मुख्य अक्ष** : वक्रता केन्द्रों को मिलाने वाली रेखा लैंस की मुख्य अक्ष कहलाती है।
- (**D**) **प्रकाशिक केन्द्र** : लैंस के अन्दर का वह बिन्दु जिससे होकर जाने वाली प्रकाश की किरण अपरिवर्तित हुये अपने मार्ग पर चली जाती है लैंस का प्रकाशिक केन्द्र कहलाता है। इसे 0 से प्रदर्शित करते हैं।
- (E) मुख्य फोकस: मुख्य अक्ष के समान्तर आने वाली प्रकाश की किरणें लैंस से अपवर्तित होकर मुख्य अक्ष के जिस बिन्दु से होकर जाती हैं (उत्तल लैंस) या जिस बिन्दु से आती हुयी प्रतीत होती हैं (अवतल लैंस) वह बिन्दु लैंस का मुख्य फोकस कहलाता है। इसे F से प्रदर्शित करते हैं।
- (F) फोकस दूरी : प्रकाशिक केन्द्र और फोकस के बीच की दूरी फोकस दूरी कहलाती है। इसे f से प्रदर्शित करते हैं। उत्तल ेंस की फोकस दूरी धनात्मक तथा अवतल लेंस की फोकस दूरी ऋणात्मक होती है।

## किरण आरेखों के उपयोग द्वारा लेंसों से प्रतिबिंब बनना

हम किरण आरेखों के उपयोग द्वारा लेंसों से प्रतिबिंबों के बनने को निरूपित कर सकते हैं। किरण आरेख लेंसों में बने प्रतिबिंबों की प्रकृति, स्थित तथा आपेक्षिक साइज का अध्ययन करने में भी हमारी सहायता करेंगे। लेसों में किरण आरेख बनाने के लिए गोलीय दर्पणों की भाँति हम निम्न में से किन्हीं दो किरणों पर विचार कर सकते हैं।

(i) वस्तु से, मुख्य अक्ष के समांतर आने वाली कोई प्रकाश किरण उत्तल लेंस से अपवर्तन के पश्चात चित्र (a) में दर्शाए अनुसार लेंस के दूसरी ओर मुख्य फोकस से गुजरेगी। अवतल लेंस की स्थिति में प्रकाश किरण चित्र (b) में दर्शाए अनुसार लेंस के उसी ओर स्थित मुख्य फोस से अपसरित होती प्रतीत होती है।



(ii) मुख्य फोकस से गुजरने वाली प्रकाश किरण, उत्तल लेंस से अपवर्तन के पश्चात मुख्य अक्ष के समांतर निर्गत होगी। इसे चित्र (a) में दर्शाया गया है। अवतल लेंस के मुख्य फोकस पर मिलती प्रतीत होने वाली प्रकाश किरण, अपवर्तन के पश्चात् मुख्य अक्ष के समांतर निर्गत होगी। इसे चित्र (b) में दर्शाया गया है।



(iii) लेंस के प्रकाशिक केंद्र से गुजरने वाली प्रकाश किरण अपवर्तन के पश्चात् बिना किसी विचलन के निर्गत होती है। इसे चित्र (a) तथा (b) में दर्शाया गया है।

(p)



लैंसों द्वारा प्रतिबिम्ब का बनना

उत्तल लैंस तथा अवतल लैंस के सामने विभिन्न स्थितियों में वस्तु रखने पर उनके द्वारा प्राप्त प्रतिबिम्ब के किरण आरेख द्वारा समझा जा सकता है।

#### उत्तल लेंस-

- (a) यदि वस्तु अनन्त पर हो तो प्रतिबिम्ब फोकस बिन्दु पर प्राप्त होता है, वास्तविक और उल्टा होता है, वस्तु से बहुत छोटा होता है।
- (b) जब वस्तु अनन्त और 2 F के बीच हो तो बहुत का प्रतिबिम्ब लैंस के दूसरी ओर F और 2 F के बीच बनता है, वस्तु से छोटा होता है, वास्तविक और उल्टा होता है।
- (c) जब वस्तु 2 F पर होती है तो वस्तु का प्रतिबिम्ब लैंस के दूसरी ओर 2 F पर ही पड़ता है, वस्तु के बराबर होता है वास्तविक और उल्टा होता है।
- (d) जब वस्तु 2F और F के बीच होती है तो वस्तु का प्रतिबिम्ब लैंस के दूसरी ओर 2 F और अनन्त के बीच बनता है, वस्तु से बड़ा होता है, वास्तिवक और उल्टा होता है।
- (e) जब वस्तु F पर होती है तो वस्तु का प्रतिबिम्ब अनन्त पर बनता है, वस्तु से बहुत बड़ा होता है, वास्तविक तथा उल्टा होता है।
- (f) जब वस्तु F और लैंस के बीच होती है तो वस्तु का प्रतिबिम्ब वस्तु की ओर ही बनता है, वस्तु से बड़ा बनता है, आभासी और सीधा होता है।

# अवतल लैंस :

- (a) जब वस्तु अनन्त पर हो तो वस्तु का प्रतिबिम्ब लैंस के फोकस पर, वस्तु से बहुत छोटा, आभासी और सीधा होता है।
- (b) जब वस्तु 2F और लैंस के बीच होती है तो उसका प्रतिबिम्ब F और लैंस के बीच बनता है, वस्तु से छोटा, आभासी और सीधा बनता है।

# लेंस सूत्र तथा आवर्धन

जिस प्रकार हमने गोलीय दर्पणों के लिए सूत्र ज्ञात किया था उसी प्रकार गोलीय लेंसों के लिए भी लेंस सूत्र स्थापित किया गया है। यह सूत्र बिंब दूरी (u), प्रतिबिंब दूरी (v) तथा फोकस दूरी (f) के बीच संबंध प्रदान करता है। लेंस सूत्र व्यक्त किया जाता है :

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

उपरोक्त लेंस सूत्र व्यापक है तथा किसी भी गोलीय लेंस के लिए, सभी स्थितियों में मान्य है। लेसों से संबंधित

प्रश्नों को हल करने के लिए लेंस सूत्र में आंकिक मान प्रतिस्थापित करते समय विभिन्न राशियों के उचित चिह्नों का ध्यान रखना चाहिए।

#### आवर्धन

किसी लेंस द्वारा उत्पन्न आवर्धन, किसी गोलीय दर्पण द्वारा उत्पन्न आवर्धन की ही भाँति प्रतिबिंब की ऊँचाई तथा बिंब की ऊँचाई के अनुपात के रूप में परिभाषित किया जाता है। इसे अक्षर m द्वारा निरूपित किया जाता है। यदि बिंब की ऊँचाई h हो तथा लेंस द्वारा बनाए गए प्रतिबिंब की ऊँचाई h' हो, तब लेंस द्वारा उत्पन्न आवर्धन प्राप्त होगा :

$$\mathbf{n}=$$
 प्रतिबिंब की ऊँचाई/बिंब की ऊँचाई  $= \frac{h'}{h}$ 

लेंस द्वारा उत्पन्न आवर्धन, बिंब दूरी  ${f u}$  तथा प्रतिबिंब-दूरी  ${f v}$  से भी संबंधित है। इस संबंध को व्यक्त करते हैं,

आवर्धन (m) 
$$=\frac{h'}{h}=\frac{v}{u}$$

# मूल्यांकन प्रश्न

# (А) बहु विकल्पीय प्रश्न

- 1. दीप्त वस्तु है-
  - (a) मोमबत्ती

(b) चाँद

(c) दर्पण

- (d) कागज
- 2. किसी बिन्दु की ओर आने वाली प्रकाश किरणें कहलाती हैं-
  - (a) अभिसारी

(b) अपसारी

(c) समान्तर

- (d) उपरोक्त में कोई नहीं
- 3. यदि उत्तल दर्पण से वस्तु का प्रतिबिम्ब ... है तो प्रतिबिम्ब है-
  - (a) वास्तविक सीधा

(b) आभासी सीधा

(c) वास्तविक उल्टा

- (d) आभासी उल्टा
- 4. प्रकाश की चाल होती है-
  - (a) 3×10<sup>5</sup> मी/से0

(b) 3×10<sup>11</sup> मी/से0

(c) 3×10<sup>8</sup> मी/से0

- (d) 3×10<sup>10</sup> मी/से0
- 5. क्राउन काँट का अपवर्तनांक होता है-
  - (a) 1.33

(b) 1.42

|                        | (c) 1.46                                                                    | (d) 1.52                                     |  |  |
|------------------------|-----------------------------------------------------------------------------|----------------------------------------------|--|--|
| 6.                     | प्रकाश के अपवर्तन की क्रिया में क्या नहीं परिवर्तित होता-                   |                                              |  |  |
|                        | (a) चाल                                                                     | (b) तरंग दैर्ध्य                             |  |  |
|                        | (c) तीव्रता                                                                 | (d) आवृत्ति                                  |  |  |
| 7.                     | पूर्ण आन्तरिक परावर्तन के लिये क्रान्तिक कोण के लिये अपवर्तन कोण होता है-   |                                              |  |  |
|                        | (a) 45°                                                                     | (b) 60°                                      |  |  |
|                        | (c) 90°                                                                     | (d) 180°                                     |  |  |
| 8.                     | उत्तल लैंस के सामने 2F पर रखी वस्तु                                         | का प्रतिबिम्ब की विशेषता होगी-               |  |  |
|                        | (a) आभासी, सीधी, वस्तु से बड़ा                                              |                                              |  |  |
|                        | (b) वास्तविक, उल्टा, वस्तु के बराबर                                         |                                              |  |  |
|                        | (c) वास्तविक, उल्टा, वस्तु से छोटा                                          |                                              |  |  |
|                        | (d) आभासी, सीधा, वस्तु से छोटा                                              |                                              |  |  |
| 9.                     | मोटर सायकिल में लगा दर्पण होता है-                                          |                                              |  |  |
|                        | (a) उत्तल                                                                   | (b) अवतल                                     |  |  |
|                        | (c) समतल                                                                    | (d) कोई नहीं                                 |  |  |
| 10.                    | अँग्रेजी के किस अक्षर का समतल दर्पण                                         | द्वारा बना प्रतिबिम्ब अक्षर की तरह नहीं होगा |  |  |
|                        | (a) H                                                                       | (b) V                                        |  |  |
|                        | (c) N                                                                       | (d) M                                        |  |  |
| (A)                    | रिक्त स्थानों की पूर्ति कीजिए-                                              |                                              |  |  |
| (a)                    | सूर्य और तारे प्रकाश स्त्रोत हैं।                                           |                                              |  |  |
| (b)                    | मोमबत्ती और विद्युत बल्ब प्रकाश स्त्रोत हैं।                                |                                              |  |  |
| (c)                    | आपतन कोण, परावर्तन कोण के होता है।                                          |                                              |  |  |
| (d)                    | यदि आपतित किरण और परावर्तित किरण के बीच कोण $60^\circ$ हो तो आपतन कोण होगा। |                                              |  |  |
| (e)                    | दर्पण द्वारा प्रतिबिम्ब हमेशा आभासी होता है।                                |                                              |  |  |
| <b>(f</b> )            | जिस वस्तु से प्रकाश पार नहीं जा सकता उ                                      | उसे कहते हैं।                                |  |  |
| (B) लघु उत्तरीय प्रश्न |                                                                             |                                              |  |  |
| 11.                    | प्रकाश का वेग कितना होता है।                                                |                                              |  |  |

233

- 12. परावर्तन के नियम क्या हैं?
- 13. प्रकाश की किरण समतल दर्पण पर अभिलम्बवत आपतित होती है। परावर्तन कोण ज्ञात करो।
- 14. पानी का अपवर्तनांक कितना होता है।
- 15. समतल दर्पण द्वारा बने प्रतिबिम्ब की दर्पण से दूरी कितनी होती है।
- 16. यदि दो समतल दर्पणों के बीच कोण  $60^\circ$  हो तो उनके बनने वाले प्रतिबिम्बों की संख्या ज्ञात करो।
- 17. गोलीय दर्पण के ध्रुव की परिभाषा लिखिये।

#### (C) दीर्घ उत्तरीय

- 18. मुख्य अक्ष के समान्तर आने वाली प्रकाश की किरण अवतल दर्पण से परावर्तित होकर किस मार्ग पर चलेगी।
  किरण आरेख बनाइये।
- 19. पूर्ण आन्तरिक परावर्तन की शर्तें लिखिये।
- 20. गोलीय लैंस के वक्रता केन्द्र मुख्य अक्ष तथा मुख्य फोकस की परिभाषा लिखिये।

# ध्वनि

प्रशिक्षु दैनिक जीवन में विभिन्न प्रकार की ध्वनियों से परिचित है। आपने गीत संगीत का आनन्द लिया होगा। रेडियो तथा टेलीविजन से आने वाली ध्वनि, मोटरगाड़ी के हार्न की ध्वनि, वाद यन्त्रों से निकलने वाली ध्वनि को सुना होगा। इस अध्याय में आप ध्वनि संबंधी विस्तृत जानकारी से अवगत हो सकेंगे।

#### क्रिया कलाप

- एक स्वरित्र द्विभुज होकर लेकर इसकी एक भुजा को रबर के पैड पर मारकर कम्पित करायें
- इस द्विभुज को कान के समीप लायें
- क्या आपको ध्वनि सुनाई पड़ती है?
- अब भुजा को स्पर्श करें
- कम्पन समाप्त होते ही ध्विन का सुनाई देना बंद हो जायेगा स्पष्ट है कि कम्पन से ध्विन उत्पन्न होती है।



ध्विन का संचरण : द्रव्य या पदार्थ जिससे होकर ध्विन का संचरण होता है उसे माध्यम कहते हैं। जब कोई स्नोत दिये गये माध्यम में कम्पन करता है तो स्नोत के समीप स्थित माध्यम के कण भी कम्पन करते हैं। ये कण अपनी ऊर्जा समीप स्थित कण को दे देते है फलतः वे भी कम्पन करने लगते हैं इस प्रकार ध्विन का संचरण होने लगता है।

ये कम्पन जब कान तक पहुँचते हैं ध्विन सुनाई देती है। क्या आप अन्य प्रकार की ध्विनयों से भी परिचित हैं?

#### विभिन्न बाद्य यंत्रों में ध्वनि उत्पन्न करने के उपाय

ढोलक, तबला, मृदंग आदि वाद्य यंत्रों से ध्विन कैसे उत्पन्न होती है? ढोलक, तबला, मृदंग आदि वाद्य यंत्रों में लगे चमड़ों के डायफ्राम पर आघात करके ध्विन उत्पन्न की जाती है।

सितार, गिटार, वायलिन आदि तार लगे वाद्य यत्रों से ध्वनि कैसे उत्पन्न करते हैं?

इन यंत्रों में लगे तारों को हल्के से खींच कर छोड़ने अथवा उन पर किसी धातु के तार या टुकड़े को रगड़ने पर ध्विन उत्पन्न होती है। बाँसुरी, बीन, शहनाई आदि में ध्विन कैसे उत्पन्न होती है? इनमें फूँक मारकर ध्विन उत्पन्न करते हैं। हम कह सकते हैं कि विभिन्न वाद्य यंत्रों/वस्तुओं से ध्विन उत्पन्न करने की चार विधियाँ हैं-

- (i) आघात से (ii) तारों को खींचकर छोड़ने से
- (iii) रगड़ने से (iv) फूँक मारने से

ध्विन के संचरण में माध्यम के कण केवल कम्पन करते हैं तथा ध्विन के साथ गित नहीं करते। कणों के कम्पन से उत्पन्न विश्लोम ही माध्यम में संचारित होता है। इस विश्लोभ को तरंग कहते हैं। जब वायु में कोई कंपमान वस्तु आगे की ओर कम्पन करती है तो अपने सामने की वायु को धक्का देकर संपीड़ित करती है और इस प्रकार एक उच्च दाब का क्षेत्र उत्पन्न होता है। इस क्षेत्र को संपीडन (c) कहते हैं। यह संपीडन कंपमान वस्तु से दूर आगे की ओर गित करता है। जब कंपमान वस्तु पीछे की ओर कंपन करती है तो एक निम्न दाब का क्षेत्र उत्पन्न होता है जिसे विरलन (R) कहते हैं। जब वस्तु आगे और पीछे तेजी से गित करती है तो वायु में संपीडन तथा विरलन शीघ्रता से बनते हैं तथा माध्यम (वायु) में संचारित होने लगते हैं। संपीडन व विरलन ध्विन तरंग बनाते हैं। ध्विन तरंगों की प्रकृति अनुदैर्घ्य है।

#### विशेष

- ध्विन संचरण के लिये माध्यम की आवश्यकता होती है
- ध्विन किसी भी माध्यम ठोस द्रव और गैस में संचिरत हो सकती हैं।
- स्त्रोत से ध्विन का संचरण सभी दिशाओं में होता है।

यदि माध्यम के कणों का विस्थापन तथा संचरण के अनुदिश हो तो तरंग अनुदैध्य कहलाती है। ध्विन तरंग के संचरण में वायु के कणों का विस्थापन तरंग संचरण के अनुदिश होता है अतः ध्विन तरंगें अनुदैध्य हैं।



## ध्विन के अभिलक्षण

1. आवृत्ति-ध्विन तरंग के संचरण में माध्यम में घनत्व परिवर्तन होता है। जब ध्विन किसी माध्यम में संचिरत होती है तो माध्यम का घनत्व किसी अधिकतम तथा न्यूनतम मान के बीच बदलता है। घनत्व के अधिकतम मान से न्यूनतम मान तक परिवर्तन में और पुनः अधिकतम मान तक आने पर एक दोलन पूरा होता है। एकांक समय में इन दोलनों की कुल संख्या ध्विन तरंग की आवृत्ति कहलाती है। प्रति सेकन्ड संपीडनों तथा विरलनों की संख्या को आवृत्ति कहते हैं। इसे D से व्यक्त करते हैं आवृत्ति का मात्रक हर्टज (Hz) है।



हैनिरच रुडोल्फ हर्ट्ज़ का जन्म 22 फरवरी 1857 को हैमबर्ग, जर्मनी में हुआ और उनकी शिक्षा बर्लिन विश्वविद्यालय में हुई। उन्होंने जे.सी. मैक्सवेल के विद्युतचुंबकीय सिद्धांत की प्रयोगों द्वारा पुष्टि की। उन्होंने रेडियो, टेलिफोन, टेलिग्राफ तथा टेलिविजन के भी भविष्य में विकास की नींव रखी। उन्होंने प्रकाश-विद्युत प्रभाव की भी खोज की जिसकी बाद में अल्बर्ट आइन्सटाइन ने व्याख्या की। आवृत्ति के SI मात्रक का नाम उनके सम्मान में रखा गया।

#### 2. आवर्तकाल :

ध्विन संचरण की दशा में दो क्रमागत संपीडनों या दो क्रमागत विरलनों को किसी निश्चित बिंदु से गुजरने में लगे समय को तरंग का आवर्तकाल T कहते हैं।

आवृत्ति 
$$\mathbf{v}=1$$
/आवर्तकाल  $\mathbf{T}$ 

प्रत्येक ध्वनि स्रोत की एक विशेषता होती है। कुछ ध्वनियाँ तीक्ष्ण, कुछ ध्वनियाँ मृदु तथा कुछ ध्वनियाँ अप्रिय होती हैं। इन्हीं विशेषताओं के कारण ध्वनि स्रोत को पहचाना जाता है।

#### 3. तारतत्व :

किसी उत्सर्जित ध्विन की आवृत्ति को मिस्तष्क किस प्रकार अनुभव करता है, उसे तारत्व कहते हैं। किसी स्त्रोत का कंपन जितनी शीघ्रता से होता है आवृत्ति उतनी ही अधिक होती है और उसका तारत्व भी अधिक होती है। जिस ध्विन की आवृत्ति कम होती है उसका तारत्व भी कम होता है। विभिन्न आकार की वस्तुएँ विभिन्न आवृत्ति के साथ कम्पन करती हैं और विभिन्न तारत्व की ध्विनयाँ उत्पन्न करती हैं।



#### 4. आयाम :

किसी माध्यम में मूल स्थित के दोनों ओर अधिकतम विश्लोम की तरंग का आयाम कहते हैं इसे अक्षर A से प्रदर्शित कर सकते हैं। ध्विन के लिये इसका मात्रक दाब या घनत्व होता है। ध्विन की प्रबलता या मृदुता मूलतः इसके आयाम से ज्ञात की जाती है। प्रबल ध्विन अधिक दूरी तक चल सकती है क्योंकि इसमें ऊर्जा अधिक होती है। उत्पादक स्नोत से निकलने के पश्चात ध्विन तरंग फैल जाती है, स्नोत से दूर जाने के पश्चात इसका आयाम तथा प्रबलता दोनों ही कम होती जाती है।

ध्विन की गुणता वह अभिलक्षण है जो हमें समान तारत्व तथा प्रबलता की दो ध्विनयों में अंतर करने में सहायता करता है। एकल आवृत्ति की ध्विन टोन कहते हैं। अनेक आवृत्तियों से मिश्रित ध्विन को स्वर कहते हैं और यह सुनने में सुखद होती है। शोर कर्ण प्रिय नहीं होता जबिक संगीत सुनने में प्रिय होता है।

#### 5. तरंग का वेग :

एकांक समय में संपीडन या विरलन द्वारा माध्यम में चली गई दूरी को तरंग का वेग कहते हैं। दो क्रमागत संपीडनों या विरलनों के बीच की दूरी को तरंगदैर्ध्य  $\lambda$  कहते हैं। दो क्रमागत संपीडनों या दो क्रमागत विरलनों को किसी निश्चित बिंदु से गुजरने में लगे समय को आवर्तकाल T कहते हैं।

अतः वेग = दूरी/समय = 
$$\frac{\lambda}{T} = n\lambda$$

या  $v = n\lambda$ 

निर्वात में ध्वनि की चाल शून्य होती है।

#### 6. ध्वनि की तीव्रता :

किसी एकांक क्षेत्रफल से एक सेकण्ड में गुजरने वाली ध्विन ऊर्जा को ध्विन की तीव्रता कहते हैं प्रबलता ध्विन के लिये कानों की संवेदनशीलता की माप है प्रबलता तथा तीव्रता में अंतर है। दो ध्विनयाँ समान तीव्रता की हो सकती हैं फिर भी एक को दूसरे की अपेक्षा अधिक प्रबल ध्विन के रूप में सुन सकते हैं।

#### 7. विभिन्न माध्यमों में ध्वनि की चाल

ध्विन की चाल उस माध्यम के गुणों पर निर्भर करती है जिसमें ये संचारित होती है। किसी माध्यम में ध्विन की चाल माध्यम के ताप पर निर्भर करती है। ठोस में ध्विन की चाल अधिक तथा गैस में सबसे कम होती है। किसी भी माध्यम में ताप बढ़ने पर ध्विन की चाल बढ़ जाती है। वायु में °C पर ध्विन की चाल 331 मी/से तथा 22°C पर ध्विन की चाल 344 मी/से होती है। ताप के नियत रहने पर माध्यम में ध्विन की चाल नियत रहती है।

#### ध्वनि का परावर्तन

प्रकाश की भाँति ध्वनि का भी परावर्तन होता है तथा यह परावर्तन के नियम का पालन करती है।

#### क्रिया कलाप

- समान लम्बाई और व्यास के गत्ते के दो खोखले बेलन लें।
- लकड़ी के या काँच के खोखले बेलनों को किसी झुकाव कोण पर रखें।
- दोनों बेलनों के बीच लकड़ी का पर्दा रखें।
- पहले बेलन के सिरे पर चित्रनुसार घड़ी रखें।
- दूसरे बेलन के खुले सिरे से घड़ी की टिक-टिक की ध्वनि सुनने का प्रयास करें।
- ध्विन सुनाई पड़ती है क्यों?

चित्र की भाँति दो एक जैसे पाइप लीजिए। आप चार्ट पेपर की सहायता से ऐसे पाइप बना सकते हैं।



#### प्रतिध्वनि

क्रिया कलाप : पहाड़ या ऊँची इमारत के पास जाकर कोई ध्विन उत्पन्न करें। आप देखेंगे कि एक निश्चित दूरी से ही ध्विन उत्पन्न करने पर थोड़े समय बाद उसी तरह की ध्विन सुनाई पड़ती है क्यों?

पहाड़ के निकट निश्चित दूरी पर जब कोई ध्विन उत्पन्न की जाती है तो ध्विन पहाड़ से टकराकर (परावर्तित होकर पुनः वापस आती है और पहले उत्पन्न की गई ध्विन की भांति सुनाई पड़ती है। इस परावर्तित ध्विन को प्रतिध्विन कहते हैं।

#### विशेष :

प्रतिध्वनि को मूल ध्वनि से अलग सुनने के लिये आवश्यक है कि मूलध्वनि को किसी परावर्तक तल तक जाने और स्रोत तक लौटने में कम से कम ... सेकण्ड का समय लगे।

ध्विन की वायु में चाल 332 मी/सेकेण्ड होती है।

प्रित ध्विन सुनने का समय  $\frac{1}{10}$  सेकण्ड

चाल = 
$$\frac{\overline{q}}{\overline{q}}$$

ध्विन द्वारा चली गयी दूरी = चाल $\times$ समय =  $332 \times \frac{1}{10}$  = 33.2 मीटर

33.2 मीटर की दूरी, ध्विन द्वारा ध्विन स्रोत से परावर्तक तल तक जाने तथा वापस आने की दूरी है। स्रोत से परावर्तक तल की दूरी =  $\frac{33.2}{2}$  = 16.6 मीटर

स्पष्ट है प्रतिध्विन सुनने के लिए स्रोत तथा परावर्तक तल के बीच की दूरी कम से कम 16.6 मीटर होनी चाहिए। गूँज का उत्पन्न होना

प्रतिध्विन में ध्विन का परावर्तन एक बार होता है जबिक गूँज (Reverberations) में ध्विन का परावर्तन बार-बार होता है।

खाली कमरे में बोलने पर या ताली बजाने पर उसकी ध्विन बार-बार सुनाई देती है। यह ध्विन के गूँजने के कारण होता है। सिनेमा घरों में दीवारों पर ध्विन अवशोषक लगाये जाते हैं तािक ध्विन का परावर्तन न हो और सिनेमा का आनन्द लिया जा सके।

#### शोर का स्रोत

अनेक स्रोतों से उत्पन्न अनेक प्रकार की ध्वनियाँ एक साथ कान तक पहुँचने पर शोर का अनुभव होता है। एक

ही स्रोत से उच्च ध्वनि भी शोर का कारण हो सकती है।

#### श्रव्यता का परिसर

मनुष्यों में ध्विन की श्रव्यता का पिरसर लगभग 20Hz से 20000Hz तक होता है। 20Hz से कम आवृत्ति की ध्विनयों को अवश्रव्य ध्विन कहते हैं। 20000Hz से अधिक आवृत्ति की ध्विनयों को पराश्रव्य ध्विन या पराध्विन कहते हैं। चमगादड़ पराध्विन उत्पन्न करते हैं। अपने मार्ग में आने वाले अवरोधक तलों से उत्पन्न प्रतिध्विन को सुन लेते हैं। प्रतिध्विन के वापस लौटने में लगे समय के आधार पर वे अवरोधकों की दूरी का अनुमान लगाकर उससे बचकर निकल जाते हैं।

# ध्वनि बूम

जब कोई पिंड ध्विन की चाल से अधिक तेजी से गित करता है तब उसे पराध्विनक चाल से चलता हुआ कहा जाता है। गोलियाँ, जेट-वायुयान आदि प्रायः पराध्विनक चाल से चलते हैं। जब ध्विन उत्पादक स्रोत ध्विन की चाल से अधिक तेजी से गित करती है तो ये वायु में प्रधाती तरंगें उत्पन्न करते हैं। इन प्रधाती तरंगों में बहुत अधिक ऊर्जा होती है। इस प्रकार की प्रधाती तरंगों से संबद्ध वायुदाब में परिवर्तन से एक बहुत तेज और प्रबल ध्विन उत्पन्न होती है जिसे ध्विन बूम कहते हैं। पराध्विनक वायुयान से उत्पन्न इस ध्विन बूम में इतनी मात्रा में ऊर्जा होती है कि यह खिड़िकयों के शीशों को तोड़ सकती है और यहाँ तक कि भवनों को भी क्षिति पहुँचा सकती है।

# कुछ और भी जानें :

- 1. 1°C ताप वृद्धि से ध्वनि की चाल में 0.6 मी/से0 की वृद्धि हो जाती है।
- 2. चन्द्रमा पर एक अंतिरक्ष यात्री से आपस में बातचीत एक विशेष यंत्र द्वारा करता है। क्योंकि चन्द्रमा पर वायुमंडल नहीं है।
  - 3. कुछ जन्तु जैसे कुत्ते 20,000 हर्ट्ज से अधिक आवृत्ति की ध्वनि सुन सकते हैं।
  - 4. एक हर्ट्ज = 1 कम्पन्न/सेकेण्ड होता है।

# मूल्यांकन प्रश्न

#### वैकल्पिक प्रश्न

निम्नलिखित प्रश्नों में सही विकल्प को छाँटकर लिखिए :

- 1. तबले में ध्वनि उत्पन्न होती है :
  - (i) रगड़ने से

(ii) फूँक मारने से

(iii) खींचने से

- (iv) आघात से
- 2. वस्तु द्वारा प्रति सेकेण्ड किये गये कम्पनों की संख्या कहलाती है :

241

|     | (i) आवर्त काल                                          | (ii) आयाम                      |
|-----|--------------------------------------------------------|--------------------------------|
|     | (iii) आवृत्ति                                          | (iv) इनमें से कोई नहीं         |
| 3.  | ध्वनि की चाल सबसे अधिक होती हैं :                      |                                |
|     | (i) तेज                                                | (ii) द्रव                      |
|     | (iii) गैस                                              | (iv) निर्वात                   |
| 4.  | ध्वनि का वेग होता है :                                 |                                |
|     | (i) $\mu = \lambda + n$                                | (ii) $\mu = \frac{\lambda}{n}$ |
|     | (iii) $\mu = n\lambda$                                 | (iv) $\mu = \frac{n}{\lambda}$ |
| 5.  | कम्पन करती वस्तु का अधिकतम विस्थापन                    | कहलाता है :                    |
|     | (i) वेग                                                | (ii) आयाम                      |
|     | (iii) आवृत्ति                                          | (iv) तरंग दैर्ध्य              |
| 6.  | प्रतिध्वनि सुनने के लिए समय अन्तराल अ                  | <b>गवश्यक</b> है :             |
|     | (i) $\frac{1}{10}$                                     | $(ii)$ $\frac{1}{100}$ सें0    |
|     | (iii) 1 से                                             | (iv) 10 से0                    |
| 7.  | ध्विन की प्रबलता अनुक्रमानुपाती होती है :              |                                |
|     | (i) $\lambda^2$                                        | (ii) a <sup>2</sup>            |
|     | (iii) n                                                | (iv) μ                         |
| 8.  | सितार में ध्वनि उत्पन्न होती है :                      |                                |
|     | (i) रगड़ने से                                          | (ii) आघात से                   |
|     | (iii) खींचने से                                        | (iv) फूँक मारने से             |
| 9.  | $0^{\circ}\mathrm{C}$ पर वायु में ध्विन की चाल होती है | :                              |
|     | (i) 3300 मी/से0                                        | (ii) 33 मीo/सेo                |
|     | (iii) 360 मी/से0                                       | (iv) 331 मी/से0                |
| 10. | निर्वात में ध्वनि की चाल होती है :                     |                                |
|     | (i) शून्य                                              | (ii) 330 मी/से                 |
|     | (iii) 336 मी/से                                        | (iv) 300 मी/से                 |
|     |                                                        | 242                            |

# लघु उत्तरीय प्रश्न

- सामान्य मनुष्य के कानों के लिए श्रव्यता का परिसर क्या है? 11.
- एक ध्वनि तरंग 339 मी/से0 से चलती है। यदि इसकी तरंग दैर्ध्य 1.5 सेमी हो तो तरंग की आवृत्ति क्या 12. होगी?
- ताप बदलने पर ध्वनि की चाल में क्या परिवर्तन होता है? 13.
- आयाम की परिभाषा लिखिए। 14.
- आवृत्ति की परिभाषा लिखिए। 15.
- ध्वनि के वेग, आवृत्ति और तरंग दैर्ध्य में सम्बन्ध बताओ। 16.
- एक हर्द्रज की व्याख्या कीजिए। 17.
- किसी खाली कमरे में गूँज क्यों सुनाई देती है। 18.
- न्या कहते हैं? 20,000 हर्ट्ज से अधिक आवृत्ति की ध्वनि को क्या कहते हैं?